KNPR 8715.3 Revision: Basic-2-A (Formerly KHB 1710.2, KSC Safety Practices Handbook) Section 1.6, Safety Variance Processing, has been revised March 15, 2005 # KENNEDY NASA PROCEDURAL REQUIREMENTS Effective Date: November 18, 2004 Expiration Date: November 18, 2009 Responsible Office: Safety and Mission Assurance # KSC SAFETY PRACTICES PROCEDURAL REQUIREMENTS This document (Attachment K) **does** contain export-controlled technical data in Category ITAR Category IV(i)_. Classified by C. Wayne Ranow on 02/01/2005. National Aeronautics and Space Administration John F. Kennedy Space Center KSC FORM 16-12 (REV. 6/95) PREVIOUS EDITIONS ARE OBSOLETE Responsible Office: SA/Director of Safety and Mission Assurance # **PREFACE** This document establishes consolidated safety procedural requirements that serve as a framework to define the parameters and boundaries required during design, operations, and maintenance activities at the Kennedy Space Center (KSC) and other areas where KSC has jurisdiction. These requirements represent combined efforts to identify and minimize the unique hazards associated with daily industrial operations, space vehicle and payload ground processing, and integrated operations. It is a living document subject to change. It should be emphasized, however, that each employee has a responsibility for safety, both his/her own and that of others who may be impacted by the employee's actions. All organizations shall meet these safety requirements. It is imperative that all programs/projects and directorate organizations meet with safety officials early in the planning stages of operations or tasks. Close attention to the details specified in this Safety Practices Procedural Requirements document is necessary for assurance of the safest possible operations with maximum efficiency. SUPERSESSION: This document supersedes KHB 1710.2, Kennedy Space Center Safety Practices Handbook. J. Larry Crawford Director of Safety and Mission Assurance DISTRIBUTION: Tech Doc Library # **TABLE OF CONTENTS** | Preface | e | 2
3
7 | | |-----------------------|--|-------------|--| | Table of Contents | | | | | List of Illustrations | | | | | List of Tables | | | | | List of | Mandatory Documents | 7
8 | | | | Reference Documents | 10 | | | | ms and Abbreviations | 15 | | | Glossa | | 22 | | | | ·· , | | | | | SECTION 1: GENERAL REQUIREMENTS | | | | | CHAPTER 1: GENERAL | 42 | | | 1.0 | Introduction | | | | 1.1 | Purpose | | | | 1.2 | Applicability and Scope | | | | 1.3 | Authority and Responsibility | | | | 1.4 | Compliance with Federal, Consensus, and NASA Standards | | | | 1.5 | Change Recommendations | | | | 1.6 | Safety Variance Processing | | | | 1.7 | Safety Jurisdiction | | | | | • | | | | | | | | | 0.0 | CHAPTER 2: WEATHER | 50 | | | 2.0 | General | | | | 2.1 | Adverse Weather Notification | | | | 2.2 | Adverse Weather | | | | | | | | | | CHAPTER 3: PERSONNEL | 52 | | | 3.0 | General | | | | 3.1 | Personnel Controls | | | | 3.2 | Personnel Access Training | | | | 3.3 | Refresher Training | | | | 3.4 | Maximum Work Time | | | | | | | | | | CHAPTER 4: CONTROL AREAS | 61 | | | 4.0 | General | 01 | | | 4.0
4.1 | | | | | 4.1
4.2 | Facility Controls | | | | | Control Area Analysis | | | | 4.3 | Manloading Limitations | | | | | | | | | | CHAPTER 5: OPERATIONAL SAFETY | 64 | | | 5.0 | Safety Monitoring of Hazardous Operations | | | | 5.1 | Tools | | | | 5.2 | Pretask and Pretest Briefings | | | | | | | | | 5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14 | Heat-Producing Devices Use of Photographic Equipment Use of Electronic Equipment Atmospheric Monitoring Systems Cryogenics Hazardous Operations Support Requirements Handling of Flammable/Combustible Liquids Near Flight Hardware Safety Warnings Elevators Hazardous Operations Emergency Power | | | |---|---|----|--| | 6.0 | CHAPTER 6: UNIQUE HAZARDOUS FACILITIES REQUIREMENTS General Valviole Assembly Dividing | 71 | | | 6.1
6.2 | Vehicle Assembly Building Rotation, Processing and Surge Facility | | | | 6.3 | Rotation, Processing and Surge Facility Operations and Checkout Building | | | | 7.0 | General CHAPTER 7: MATERIALS PROCESSING SECTION 2: SPECIAL REQUIREMENTS | | | | <u>Attachm</u> | ents_ | | | | A | KSC SUPPLEMENT TO OSHA 29 CODE OF FEDERAL
REGULATIONS (CFR), PARTS 1910/1926 | 76 | | | | 1.0 Personal Protective Requirements 1.1 Fall Protection/Work on Elevated Structures 1.2 Machine Shop Safety 1.3 Self-Contained Atmospheric Protective Ensemble Requirements 2.0 Emergency Evacuation Requirements 3.0 Lockout/Tagout Program 4.0 Danger Tags 5.0 Battery Handling | | | | В | KSC SUPPLEMENT TO NPG 8715.3, NASA SAFETY MANUAL | 81 | | | | 1.0 Technical Operating Procedures 2.0 Mishaps and Close Calls 2.1 General Requirements 2.2 Definition of Mishaps and Close Calls 2.3 Reporting Mishaps and Close Calls 2.4 Investigation 2.5 Mishap Reports 2.6 Corrective Action 2.7 Lessons Learned | | | | | 2.8
2.9
3.0 | Metrics and Trend Analysis Mishaps Involving Payload Customers, Resident Office Personnel, and Official Visitors Safety Program | | |---|---|--|------------| | С | RES | SERVED | 97 | | D | KS | C SUPPLEMENT TO NFPA 70, NATIONAL ELECTRIC CODE | 98 | | | | Grounding and Bonding Three-Phase Power Connections | | | E | | C SUPPLEMENT TO NPD 8710.5, NASA SAFETY POLICY FOR ESSURE VESSELS AND PRESSURIZED SYSTEMS | 101 | | | 1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
13.0
14.0
15.0 | Definitions Policy Applicability and Scope Responsibilities General Pressure Vessel and Pressure Systems Documentation Requirements Testing Requirements Inservice Inspection and Test Plan Inspection Requirements Nondestructive Examination Marking/Identification Requirements Engineering Analysis Repairs, Alterations, or Modifications Inactive and Unsafe Vessels and Systems Certifications/Recertification Definitions and Requirements | | | | | Appendix A to Attachment E Appendix B to Attachment E | 127
130 | | F | | UPPLEMENT TO NSS 1740.12, NASA SAFETY STANDARD XPLOSIVES, PROPELLANTS, AND PYROTECHNICS | 136 | | | 2.0 | Humidity Requirements Explosives Requirements Propellant Requirements | | | | | Appendix A to F | | | G | KSC SUPPLEMENT TO NASA-STD-8719.9, NASA SAFETY STANDARD FOR LIFTING DEVICES AND EQUIPMENT | | 150 | | | | Hoisting and Handling
Suspended Load Operation Analysis/Approval | | Appendix A to G Appendix B to G | | | TEM SAFETY AND RELIABILITY ENGINEERING UIREMENTS | 163 | |---|--------------------------|---|--| | | 1.0
2.0
3.0
4.0 | General Hazard Analysis/Risk Identification Process Reliability and Maintainability Engineering NASA-Managed Development Projects | | | 1 | RESI | ERVED | 166 | | J | RESERVED 1 | | | | K SPACE SHUTTLE LAUNCH AND LANDING OPERATIONS | | CE SHUTTLE LAUNCH AND LANDING OPERATIONS | 168 | | | 1.0 | Flight Hardware Access After Power Reactant Supply and Distribution Servicing | | | | 2.0 | Scrub Operations | | | | 3.0 | Turnaround Operations | | | | 4.0
5.0 | Postlaunch Operations Orbiter Nominal Landing | | | | 5.0 | Orbiter Norminal Landing | | | | | LIST OF ILLUSTRATIONS | | | <u>Illustrations</u> | | <u>Title</u> | <u>Page</u> | | E-1
E-2
E-3
E-4
E-5
E-6 | | Type E, A, U, Y, and F Hose Containment Grips Type T Hose Containment Grip Inservice Inspection Requirements Recertificatioin Procedure for Inservice Equipment System Data Requirements Vessel Data Requirements | 121
122
123
124
125
126 | # **LIST OF TABLES** | <u>Table</u> | <u>Title</u> | <u>Page</u> | |--------------|---|-------------| | 1-1 | Safety Variance Coordination/Approval Process | 48 | | 3-1 | Maximum Work Time (MWT) Applicability Table | 56 | | A-1 | Protective Clothing and Ensembles | 78 | | K-1 | Orbiter Post Landing GH ₂ Requirements | 177 | | | | | ## **LIST OF MANDATORY DOCUMENTS** The latest issue of the following documents shall be used. ## OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA) Executive Order 12196, Occupational Safety and Health Program for Federal Employees Title 29 CFR, Part 1960, Basic Program Elements for Federal Employees Occupational Safety and Health Program Title 29 CFR, Parts 1910 to 1990, Occupational Safety and Health Administration Title 40 CFR, Protection of the Environment, Environmental Protection Agency Title 49 CFR, Parts 171 to 178, Transportation, Department of Transportation ####
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA) | NPD 8621.1 | NASA Mishap Reporting and Investigating Policy | |------------------|---| | NPD 8700.1 | NASA Policy for Safety and Mission Success | | NPD 8710.1 | Emergency Preparedness Program | | NPD 8710.2 | NASA Safety and Health Program Policy | | NPD 8710.5 | NASA Safety Policy for Pressure Vessels and Pressurized Systems | | NPD 8720.1 | NASA Reliability and Maintainability Program Policy | | NPR 8621.1 | NASA Procedures and Guidelines for Mishap Reporting, Investigating, and Recordkeeping | | NPR 8715.1 | NASA Safety and Health Handbook Occupational Safety and Health Programs | | NPR 8715.2 | NASA Emergency Preparedness Plan Procedural Requirements | | NPR 8715.3 | NASA Safety Manual | | NPR 8715.4 | Inservice Inspection of Ground- Based Pressure Vessels and Systems | | NASA-STD-8719.7 | Facility System Safety Guidebook | | NASA-STD-8719.9 | NASA Safety Standard for Lifting Devices and Equipment | | NASA-STD-8719.11 | Safety Standard for Fire Protection | NASA-STD-8719.13 NASA Software Safety Standard Planning, Developing and Managing an Effective Reliability and Maintainability Program NSS 1740.12 Safety Standard for Explosives, Propellants, and Pyrotechnics KNPD 8700.1 Safety and Mission Assurance Policy Directive KNPR 8720.1 Reliability, Maintainability, and Quality Assurance Procedural Requirements KCA 1308 Joint Operating Procedure Between 45th Space Wing and the #### LIST OF REFERENCE DOCUMENTS John F. Kennedy Space Center for Safety (JOP 15E-3-14) The following documents contain information that support the requirements contained in this KNPR. Consult with the document's Office of Primary Responsibility (OPR) for applicability. ## **UNITED STATES AIR FORCE (USAF)** AFMAN 91-201 Explosives Safety Standard AFSC DH 1-4 Electromagnetic Compatibility EWR 127-1 Eastern and Western Range 127-1, Range Safety Requirements #### **DEPARTMENT OF DEFENSE (DOD)** DODM 4145-26 DOD Contractors' Safety Manual for Explosives DOD 6055.9-STD DOD Ammunition and Explosives Safety Standards Functional Plan 3610 Space Shuttle Support Contingency Functional Plan 3610-xx (Current Year Date) #### JOHNSON SPACE CENTER (JSC) JSC 08934 Shuttle Operational Data Book, Volume I, Shuttle Systems Performance and Constraints Data JSC SW-E-0002 Ground Support Equipment General Design Requirements K-Band Workshop, JSC, May 1984 NSI RF Sensitivity Evaluation at Microwave Frequency NSTS 07700, Vol. VIII NSTS Operations NSTS 08934 Orbiter Crash and Rescue Information NSTS 22206 Requirements for Preparation and Approval of Failure Modes and Effects Analysis and Critical Items List NSTS 22254 Methodology for Conduct of Space Shuttle Program Hazard Analyses SSP 30234 Failure Modes and Effects Analysis and Critical Items List Requirements for the Space Station Freedom Program SSP 30309 Safety Analysis and Risk Assessment Requirements, Space Station Freedom Program SSP 30423 Space Station Approved Electrical, Electronic, and Electromechanical Parts Lists ## **KENNEDY SPACE CENTER (KSC)** GP-14-2 Facility Utilization Charts GP-435, Vol. 1 Engineering Drawing Practices, Ground Support Equipment GP-864 Electrical Cables Handbook (KAPL-3) GSOP 5400 Ground Safety Operating Procedures JHB 2000 KSC Comprehensive Emergency Management Plan K-SF-0003.7 Ground Safety Plan Off-Site Facility (Vandenberg Air Force Base, CA) KNPR 1610.1 KSC Security Handbook KNPR 1820.3 KSC Hearing Conservation Program KNPR 1820.4 KSC Respiratory Protection Program KNPR 1840.19 KSC Industrial Hygiene Procedural Requirements KNPR 1860.1 KSC Ionizing Radiation Protection Program KNPR 1860.2 KSC Nonionizing Radiation Protection Program | KNPR 1870.1 | KSC Sanitation and Pollution Control Procedural Requirements | |----------------------|---| | KNPR 4000.1 | Supply Support System Manual | | KNPR 6000.1 | Transportation Support System Procedural Requirements | | KNPR 8800.7 | Hazardous Waste Management | | KNPD 8500.1 | KSC Environmental Management | | KNPR 8072.1 | KSC Materials and Processes Control Procedures and Guidelines | | KNPR 8715.4 | KSC Lockout/Tagout Procedures and Guidelines | | KNPR 8715.5 | KSC Personal Protective Equipment Program Procedures and Guidelines | | KSC-DE-512-SM | Guide for Design Engineering of Ground Support
Equipment and Facilities for Use at Kennedy
Space Center | | KSC-DF-502 | SRM/VAB Inadvertent Ignition Effects Study | | KSC-DF-3669 | Vehicle Assembly Building Housing Abatement Plan | | KSC Drawing 80K04331 | Safety Standard for Compresses Gas Cylinders | | KSC Drawing 81K04331 | Specification for Marking of Propellant Portable Containers | | KSC Drawing 81K00643 | Specification for Marking of Mobile GSE | | KSC-PLN-1904 | Trailer/Equipment Tie Down Plan | | KSC-STD-E-0002 | Hazard Proofing of Electrically Energized Equipment | | KSC-STD-E-0011 | Electrical Power Receptacles | | KSC-STD-E-0012 | Bonding and Grounding | | KSC-STD-E-0013 | Facility Lightning Protection Design | | KSC-STD-E-0015 | Marking of Ground Support Equipment | | KSC-STD-SF-0004 | Ground Piping Systems Color Coding and | | | Identification, Safety Standard for | |------------------------|---| | KSC-STD-Z-0005 | Pneumatic Ground Support Equipment, Design of | | KSC-STD-Z-0006 | Hypergolic Propellants Ground Support Equipment, Design of | | KSC-STD-Z-0007 | Hydrocarbon Fuel Ground Support Equipment, Design of | | KSC-STD-Z-0008 | Ground Life Support Systems and Equipment, Design of | | KSC-STD-Z-0009 | Cryogenic Ground Support Equipment, Design of | | KSC-STD-Z-0010 | Environmental Control Systems, Coolant
Servicing Systems, and Ground Support
Equipment, Design of | | K-STSM-09.3.1 | STS Operations Plan, Flight and Ground Crew Rescue | | KVM-PL-1.2 | KSC Emergency Medical Service Plan | | KVT-PL-0014 | KSC Off-Site Operations Plan | | KVT-PL-0021 | NSTS Salvage Plan | | OMI S0018 | Adverse Weather/Lightning Monitoring (LC-39) | | S00000-2 | Technical Operating Procedures Guidelines | | UNITED STATES MILITARY | | | MIL-H-25579 | Hose Assembly, Tetrafluoroethylene, High Temperature, Medium Pressure, Class 1 | | MIL-R-9673 | Radiation Limits, Notice 2, 6 July 1976 | | MIL-STD-461 | Requirements for the Control of Electromagnetic Interference Emissions and Susceptibility | | MIL-STD-462 | Measurement of Electromagnetic Interference Characteristics | | MIL-STD-1512 | Electroexplosive Subsystems Electrically Initiated Design Requirements and Test Methods | Human Engineering Design Criteria for Military Systems, Equipment and Facilities MIL-STD-1472 MIL-STD-1522 Standard General Requirements for Safe Design and Operation of Pressurized Missile and Space Systems #### NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA) NASA-STD-6001 Flammability, Odor, Off-gassing and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion **OTHER SOURCES** ACGIH Threshold Limit Value and Biological Exposure Indices ANSI A10.3 Power Actuated Fastening Systems, Safety Requirements for ANSI A17.1 Safety Code for Elevators and Escalators ANSI A136.1 American National Standard for the Safe Use of Lasers ANSI Z135.1 Safety Color Code ANSI/ASME B31.3 Process Piping ANSI/ASME B40.1 Gauges – Pressure Indicating Dial Type – Elastic Element ANSI/ASME PTC 25 Pressure Relief Devices ASME BPVC ASME Boiler and Pressure Vessel Code, Section VIII, Divisions 1 and 2 ASME/NB-23 National Board Inspection Code IEEE C95.1 Safety Levels with Respect to Human Exposure to Radio Frequency of Electromagnetic Fields FIRL Report, F-B2303-9 RF Evaluation of the Single Bridgewire Apollo Standard Initiator National Fire Codes National Fire Protection Association Technical Manual No. 11-6230-220-12 Operators and Organizational Maintenance USAEHA Radiation Protection Special Study No. 42-035-69 AN/TVS-3 Searchlight (20 kW) Evaluation #### **ACRONYMS AND ABBREVIATIONS** AC Alternating Current ACGIH American Conference of Governmental Industrial Hygienists AFGE American Federation of Government Employees AFMAN Air Force Manual AFMC Air Force Material Command AHJ Authority Having Jurisdiction ANSI American National Standards Institute AP Ammonium Perchlorate APS Aft Propulsion System APU Auxiliary Power Unit ARCS Aft Reaction Control System ARF Assembly and Refurbishment Facility ASME American Society of Mechanical Engineers BDA Blast Danger Area BEU Breathing Escape Unit BSM Booster Separation Motor c/o Check-Out Cat. Category CAP Corrective Action Plan CAPPS Checkout Assembly & Payload Processing Services Contract CCAFS Cape Canaveral Air Force Station CCB Change Control Board CCF Converter Compressor Facility CD Center Director CDE Center Declared Emergency CDDT Countdown Demonstration Test CDF Confined Detonating Fuse CFR Code of Federal Regulations CIL Critical Items List COPV Composite Overwrapped Pressure Vessel CPS Chemical Protection Suit CT Crawler Transporter DBP Design Burst Pressure DC Direct Current DCR Document Change Recommendation DMES Dimethylethoxsilane DO Duty Officer DOD Department of Defense DOT Department of Transportation DRA Document Release Authorization ECS Environmental Control System EDO Extended Duration Orbiter EED Electroexplosive Device ELSA Emergency Life Support Apparatus EM Electro-Mechanical EMU Extravehicular Mobility Unit EOM End of Mission EPD Emergency Procedures Document ERP Emergency Response Plan ESP Engine Service Platform ET External Tank ETA Explosive Transfer Assembly ETE Explosives Test Equipment ETVAS External Tank Vent Arm System EWR Eastern Western Range FDS Fluid Distribution System FIV Fuel Isolation Valve FJAF Field Joint Assembly Fixture FM Factory Mutual FM Frequency
Modulation FMEA Failure Modes and Effects Analysis FOS Factor of Safety FRCS Forward Reactant Control System FRF Flight Readiness Firing FRSI Felt Reusable Surface Insulation FSM Fuel Supply Module FSS Fixed Service Structure FTA Fault Tree Analysis GHe Gaseous Helium GH₂ Gaseous Hydrogen GO₂ Gaseous Oxygen GOAL Ground Operations Aerospace Language GOX Gaseous Oxygen Gr/Ep Graphite Epoxy GSE Ground Support Equipment GUCP Ground Umbilical Carrier Plate H_2 Hydrogen HB High Bay HDP Hold Down Post HGDS Hazardous Gas Detection System HMF Hypergol Maintenance Facility HP High Pressure HPU Hydraulic Power Unit HPWF High Pressure Wash Facility HVDS Hypergol Vapor Detection System HVES Hypergolic Vent Exhaust System IA Independent Assessment ID Identification IRIS Incident Reporting and Investigation System ISI Inservice Inspection ISS International Space Station IT Intertank JSC Johnson Space Center (NASA, Houston, Texas) JBOSC Joint Base Operations Support Contract KCA Kennedy Customer Agreement KNPD Kennedy NASA Policy Directive KNPR Kennedy NASA Procedural Requirements KPD KSC Program Directive KSC Kennedy Space Center (NASA, KSC, Florida) kV Kilovolt kW Kilowatt Ib/in Pound per square inch LC Launch Complex LD Launch Director LDA Launch Danger Area LDEM Lifting Devices and Equipment Manager LEL Lower Explosive Limit LH Left Hand LH₂ Liquid Hydrogen LLIS Lessons Learned Information System LOMS Left OMS LO₂ Liquid Oxygen OX Liquid Oxygen Liquefied Propane LP LSC Linear Shape Charge LSP Launch Support Program M&P Materials and Processes MAWP Maximum Allowable Working Pressure MDD Mate/Demate Device MDOP Maximum Design Operating Pressure MEC Master Events Controller MEOP Maximum Expected Operating Pressure MIB Mishap Investigation Board MIL Military MLG Main Landing Gear MLP Mobile Launch Platform MMH Monomethylhydrazine MOP Maximum Operating Pressure MOU Memorandum of Understanding MPa MegaPascal MR Material Review MRB Material Review Board MSD Musculoskeletal Disorder MTB Materials Testing Branch mV Millivolt MVAK Module Vertical Access Kit MWT Maximum Work Time N_2H_4 Hydrazine N₂O₄ Nitrogen Tetroxide N/A Not Applicable NASA National Aeronautics and Space Administration NCC NASA Convoy Commander NDE Nondestructive Evaluation NDI Nondestructive Inspection NEC National Electrical Code NEPO NASA Emergency Preparedness Officer NFC National Fire Code NFPA National Fire Protection Association NIOSH National Institute for Occupational Safety and Health NPD NASA Policy Directive NPG NASA Procedures and Guidelines NS Nonstock NSI NASA Standard Initiator NSS NASA Safety Standard NSTS National Space Transportation System NTD NASA Test Director O₂ Oxygen O&C Operations and Checkout O&M Operations and Maintenance O&SHA Operating and Support Hazard Analysis OAA Orbiter Access Arm ODS Orbiter Docking System ODMS Oxygen Deficiency Monitoring System OHF Occupational Health Facility OIC Orbiter Integration Clerk OIS Operational Intercommunications System OMBUU Orbiter Midbody Umbilical Unit OMD Operations and Maintenance Documentation OME Orbiter Main Engine OMI Operations and Maintenance Instructions OMRSD Operational Maintenance Requirements and Specifications Document OMS Orbiter Maneuvering Subsystem OPF Orbiter Processing Facility OPR Office of Primary Responsibility OSF Ordnance Storage Facility OSH Occupational Safety and Health OSHA Occupational Safety and Health Administration OTC Orbiter Test Conductor OTV Operational Television PA Public Affairs PAWS Paging and Area Warning System PCR Payload Changeout Room PDE Program Declared Emergency PEL Permissible Exposure Level PGOC Payloads Ground Operations Contract PHA Preliminary Hazard Analysis PHE Propellant Handlers Ensemble PIC Pyro Initiator Controller PLB Payload Bay PM Preventive Maintenance PNL Panel ppm Parts per million PRA Probabilistic Risk Assessment PRSD Power Reactant Supply and Distribution psid Pounds Per Square Inch Differential psig Pounds Per Square Inch Gage PSM Pressure Systems Manager PTCR Pad Terminal Connection Room PV Pressure Vessel PV/S Pressure Vessel/Systems PVT Pressure Volume Temperature QD Quick Disconnect R&M Reliability and Maintainability RBDA Reliability Block Diagram Analysis RCM Reliability Centered Maintenance RCS Reaction Control System RF Radio Frequency RH Relative Humidity RMS Root-Mean-Square ROMS Right OMS RPSF Rotation, Processing, and Surge Facility RRB Risk Review Board RSS Rotating Service Structure RTG Radioisotope Thermoelectric Generator RTLS Return to Launch Site S&A Safe and Arm S&MA Safety and Mission Assurance S/N Serial Number SAR Supplied Air Respirator SCA Shuttle Carrier Aircraft SCAPE Self Contained Atmospheric Protective Ensemble SCBA Self Contained Breathing Apparatus SCC Safety Control Center SCFM Standard Cubic Feet per Minute SCO Space Craft Operator SFOC Space Flight Operations Contract SFP Single Failure Point SHA System Hazard Analysis SLF Shuttle Landing Facility SLOAA Suspended Load Operation Analysis/Approval S&MA Safety and Mission Assurance SPF Spray Paint Facility SQ&MA Safety, Quality, and Mission Assurance SRB Solid Rocket Booster SRE Safety and Reliability Engineering SRM Solid Rocket Motor SRM&QA Safety, Reliability, Maintainability, and Quality Assurance SRSS Shuttle Range Safety System SSA Software Safety Analysis SSHA Subsystem Hazard Analysis SSME Space Shuttle Main Engine SSP Space Shuttle Program SSR Safety Statistics Record SSV Space Shuttle Vehicle STD Standard STS Space Transportation System SW Switch SW Space Wing TAL Transatlantic Abort Landing TC Test Conductor TCDT Terminal Count-Down Test TD Test Director TLV-TWA Threshold Limit Value-Time Weighted Average TOP Technical Operating Procedure TSM Tail Service Mast TTL Task Team Leader TVC Toxic Vapor Check UHF Ultra High Frequency UL Underwriters Laboratories USAF United States Air Force UT Ultrasonic UTPA Universal Throat Plug Assembly UT-THK Ultrasonic Testing-Thickness VAB Vehicle Assembly Building VAFB Vandenberg Air Force Base VE Visual External VHF Very High Frequency VPF Vertical Processing Facility #### **GLOSSARY** NOTE: Unique Definitions for Discipline Specific Areas are annotated: (COPV) – Composite Overwrapped Pressure Vessel (PV) – Pressure Vessel - 1. 1% H2: A measure of hydrogen by volume in air. - Alteration: (PV) Change that affects the pressure containing capability of a pressure vessel. Nonphysical changes such as an increase in the maximum allowable working or design pressure (internal or external) or design temperature of a pressure vessel shall be considered an alteration. A reduction in minimum temperature such that additional mechanical tests are required shall also be considered an alteration. See ANSI/NB-23, Chapter 1, Glossary of Terms. - **Applicable Codes, Standards, Guides:** Any national consensus code, standard or guide, or any NASA KSC accepted design code, standard or guide for the design verification of pressure vessels, systems or their components. - 4. <u>Authorized Personnel</u>: The maximum number of personnel permitted within a control area at any one time. Presence of all personnel is not mandatory. Mandatory personnel participation is normally controlled by call to stations and/or steps/sequences within the body of the procedure. - **Blast Danger Area (BDA):** For the Space Shuttle vehicle with a full load of propellants this area is within a 4485-foot radius centered on the space vehicle including the pad. - **Breathing Escape Unit (BEU)**: Used only for escape from a hazardous environment. - 7. <u>Buddy System</u>: The buddy system requires two people be designated to be concerned with each other's safety in a hazardous situation. The system does not demand shoulder-to-shoulder contact, but rather visual contact and a proximity that allows each buddy to help the other in an emergency. - **8. Cat. I SCAPE:** PHE with backpack. Operating time from air on to air off is 120 minutes. - **9. Cat. IV SCAPE**: Same as Category I with hose-line breathing in lieu of the backpack. - **10. Cat. VI SCAPE:** 'Chemturion' CPS "blue suit" with hose-line breathing. - **11. Caution:** A notation before an operational step, etc., which, if not adhered to or observed, could result in damage to equipment. - **12. Certification:** (PV) Documentation qualifying a vessel or system to operate in its particular service. - **Class A PPE**: Personal protective equipment category that is the minimum PPE required for hypergolic operations that have a potential for liquid flow release and heavy vapor concentrations. Refer to Attachment A, Table A-1. - 14. <u>Class B PPE</u>: Personal protective equipment category that is the minimum PPE required for hypergolic operations that have very low or no potential for liquid flow, and a low potential for liquid residuals, and a potential for vapor release. Refer to Attachment A, Table A-1. - required for hypergolic operations that have no potential for liquid flow (hypergolic fluids), and a low potential for limited vapor release, and an expectation that the Threshold Limit Valve/time Weighted Average (TLV-TWA) will or has been attained through the monitoring of the breathing zone, and there is a two-valve isolation (with independent controls) from liquid sources. Refer to Attachment A, Table A-1. - **16.** Cleared Area: An area where a hazardous condition exists or a hazardous operation is in progress; personnel are prohibited from entering. - 17. <u>Close Call</u>: An occurrence or a condition of employee concern in which there is no injury or only minor injury requiring first aid and no significant equipment/property damage/mission failure (less than \$1000), but which possesses a potential to cause a mishap. - **18. Compatibility:** (COPV) The ability of two materials or substances to come into contact without altering their structure or causing a reaction in terms of permeability, flammability, ignition/combustion, functional/material degradation, contamination, toxicity,
pressure/ temperature, shock, oxidation, and corrosion. - **19. Control Area:** A designated, limited-access area where a hazardous condition exists or a hazardous operation is in progress; nonessential personnel are prohibited from entering. - **20. Control Point**: The area or place where the task leader and any other support groups direct and monitor the operation. - 21. Reserved **Controlled Switching:** No flight vehicle/element or GSE commands issued, no switches or circuit breakers operated on the flight elements or GSE electrically connected to the flight elements, except those commands and switch/ circuit breaker operations directed by the TD (and sub-tasks) requiring controlled switching. - **Credible:** A condition that can occur and is reasonably likely to occur. Failures of structure, pressure vessels, and pressurized lines and fittings are not considered credible failure modes if those elements comply with the applicable requirements. - **Critical Position:** A critical position is one in which the worker's job performance can directly impact ground safety, flight safety or mission success. This includes but is not limited to: - a. Workers dealing directly with flight hardware, software, or ground support equipment, or - b. Employees having authority to make decisions on flight hardware or software processing, or - c. Workers involved in launch or landing activities, or - d. Personnel who work in ground systems that have a functional or physical interface with flight systems, or - e. Employees working with other systems that are hazardous by nature. In the types of positions delineated above, there is not more than one level of check and balance regarding the employee's decisions or actions. - **Critical Lift:** A lift where loss of control could result in loss of life, loss or damage to flight hardware or a lift involving special, high dollar items, such as spacecraft, one-of-a-kind articles or major facility components, etc., where loss would have serious programmatic impact. - **De-Rating:** (PV) The lowering of the maximum allowable working pressure or narrowing of the allowable operating temperature range of a pressure vessel or system. - **Design Burst Pressure:** (PV) The theoretical pressure at which a vessel or other pressurized component would burst, based on calculations using accepted formulas and material properties. Vessels and systems to be placed in service are never subjected to a burst pressure test. **Design Pressure:** (PV) The pressure used in the design of a vessel or system for the purpose of determining minimum permissible thickness or physical characteristics of the different parts. When applicable (for liquids), static head shall be added to the design pressure to determine the thickness of any specific part of a vessel. (Reference Appendix 3, Paragraph 3-2, ASME Code, Section VIII, Division 1, and Paragraph 301.2, ASME B31.3). - **Design Temperature:** (PV) The metal temperature used in the design of a vessel or system for determining the minimum required thickness of the components, and for selecting the maximum allowable stress for the materials used in the vessel or system. - **Deviation (1):** A documented variance that authorizes departure from a particular S&MA requirement, where the intent of the requirement is being met through alternate means that provide an equivalent level of safety with no additional risk. - 31. <u>Deviation (2):</u> Documented and approved permission that authorizes the addition, deletion, or modification of steps or sequences in a Category I or Category II TOP. KSC Form 4-30A is used for this purpose. - **32.** Electroexplosive Device (EED): EED Categories EEDs are categorized based on the effects of inadvertent initiation. EED categories are as follows: - Category A: EEDs which, by the expenditure of their own energy, or because they initiate a chain of events, may cause injury of death to people or damage to property. - b. Category B: EEDs, which, in themselves, or by initiating a chain of events, will not injure people or damage property. #### 33. Reserved. - **Emergency Instructions:** Written instructions, contained within a TOP that provide for safing hardware and for implementing emergency actions required to evacuate or safeguard personnel, and prevent or limit the extent of damage should an emergency arise. - **35.** <u>Emergency Life Support Apparatus (ELSA)</u>: Used only for escape from a hazardous environment. - **Emergency Procedures Document (EPD):** A document produced for work areas to provide the processing teams with procedures to be followed if an emergency occurs at any time in that facility. - **End Item:** A final combination of end products, components, parts or materials that is ready for its intended use. - **38.** <u>Essential Personnel</u>: The number of personnel required within the control area to perform a particular operation. - **Explosive Test Equipment:** Electrical circuit test equipment used for testing explosives items, pyrotechnic devices, or circuits connected to those items before or after installation. - **Explosives:** Any chemical compound or mechanical mixture that, when subjected to heat, impact, friction, detonation, or other suitable initiation, undergoes a very rapid chemical change with the evolution of large volumes of highly heated gases that exert pressures in the surrounding medium. The term applies to materials that either detonate or deflagrate. - **41.** Factor of Safety (FOS): (COPV) Ratio of design burst pressure to maximum ground processing pressure. - **First Aid:** First aid involves initial treatment and subsequent observation of work-related minor scratches, cuts, burns, splinters, etc., which do not: (1) Ordinarily require professional medical care even though the treatment may be provided by a physician or registered professional personnel; and (2) Involve loss of consciousness, a lost workday, restriction of work or motion, transfer to another job; or (3) Result in payments by the Office of Workers Compensation Program. The following procedures are considered first-aid treatment. - a. Application of antiseptics during first visit to medical personnel. - b. Treatment of first-degree burn(s). - c. Application of bandage(s) during any visit to medical personnel. - d. Use of elastic bandage(s) during first visit to medical personnel. - e. Removal of foreign bodies not embedded in eye if only irrigation is required. - f. Removal of foreign bodies from wound if procedure is not complicated and is, for example, by tweezers or other simple technique. - g. Use of nonprescription medications and administration of single dose of prescription medication on first visit for minor injury or discomfort. - h. Soaking therapy on initial visit to medical personnel or removal of bandages by soaking. - Application of hot or cold compress(es) during first visit to medical personnel. - j. Application of ointments to abrasions to prevent drying or cracking. - k. Use of whirlpool bath therapy during first visit to medical personnel. - I. Negative X-ray diagnosis. - m. Observation of injury/illness during visit to medical personnel. **Flexhose:** There are two basic types of flexhoses – those constructed entirely of metal, herein described by the term "metal hose", and those constructed of elastomeric material or a combination of elastomeric material and metal, herein described by the term "nonmetallic hose". - a. Metal Hose: A metal hose consisting of a flexible metal pressure carrier tube surrounded by an outer layer of wire braid (some low pressure metal hoses do not utilize an outer layer of wire braid). The flexible metal pressure carrier tube and the wire braid are attached to the hose end fittings by welding, silver-soldering, or brazing (some metal hoses used for cryogenic applications utilize an inner and outer flexible metal tube with a vacuum in the space between the inner and outer flexible tubes). - Nonmetallic Hose: A nonmetallic hose consists of a polytetrafluoroethylene or other flexible elastomeric material pressure carrier tube reinforced by fabric or wire braid with metal end fittings attached by mechanical means such as swaging or crimping. - **44.** Flight Hardware Processing Facilities: Buildings and areas, to include their respective perimeter fence, where flight hardware is processed. - **45.** Flight Termination System: A radio commanded airborne system whose purpose is to detonate explosives installed on the flight vehicle to end the vehicle's flight. - **Fracture Control:** Fracture control is a set of policies and procedures involving the application of analysis and design methodology, manufacturing technology, and operating procedures to prevent structural failure due to the initiation of and/or propagation of flaws or crack-like defects during fabrication, testing, and service life. - **47. Fracture Mechanics**: An engineering concept used to predict flaw growth and fracture behavior in materials and structures containing cracks or crack-like flaws. - **Ground Support Equipment (GSE):** Ground-based equipment used to store, transport, handle, test, checkout, service, and control aircraft, launch vehicles, spacecraft, or payloads. - **49.**Hazardous Fluids: (PV) Gases or liquids of such a nature that a given quantity of the gas or liquid's vapor, when mixed or unmixed with air, is hazardous to personnel or equipment due to flammability, toxicity, or extremes of temperature. The following fluids are considered to be hazardous; additional fluids may be designated to be hazardous at the discretion of the KSC PSM. - a. Alcohol - b. Ammonia - c. Gaseous Hydrogen - d. Liquefied Petroleum Gases (Propane, Butane, as defined in NFPA 58) - e. Liquid Air - f. Liquid Hydrogen - g. Liquid Nitrogen - h. Liquid Oxygen - i. Trichloroethylene - **Hazardous Material:** Any solid, liquid, or gaseous material which meets the hazard reporting requirements of 29CFR 1910.1200. This includes
commodities that, under foreseeable conditions, are toxic, carcinogenic, cryogenic, explosive, flammable, pyrophoric, water-reactive, corrosive, an oxidizer, a compressed gas, a combustible liquid, or are chemically unstable. - **51.** Hazardous Operation (Hazardous Tasks): Any operation involving materials or equipment that has a high potential to result in loss of life, serious injury to personnel, or damage to systems, equipment or facilities. - **52. Hazardous Steps Affected/Added:** All changes and deviations which: - a. Change or modify hazardous steps. - b. Initiate/add hazardous steps to existing hazardous/nonhazardous TOPs. - c. Intensify/extend hazardous steps to existing hazardous TOPs (e.g., extend duration/time of hazardous operation, extend hazardous control area, and add number of personnel in control area). - d. Change the existing safety requirements. - **Hazardproof**: Prevention of an explosive atmosphere penetrating electrical fixtures where sparking or arcing could occur. - **54.** <u>Higher Level Requirements</u>: Requirements contained in documents issued by authorities having jurisdiction over KSC operations. **Hydrostatic Test:** (PV) The test of a pressure vessel or system during which the vessel or system is filled with a liquid (usually water) and pressurized to a designated level in a manner prescribed in the applicable code. (Reference Paragraph UG-99, ASME Code, Section VIII, Division 1 or Article T-3, ASME Code, Section VIII, Division 2.) - **56.** <u>Impact Limit Line</u>: A line defining a limit beyond which a missile/spacecraft or specified portions thereof will not be allowed to impact. - **Inactive Vessels/Systems:** (PV) These are vessels/ systems which are not in service because of changes in program requirements and have no current planned usage but have not been determined to be unsafe. - **Industrial Operation:** A task, usually performed in one location, and consisting of one or more work elements in which the person(s) performing the task has had training (certificate, license, etc.) to meet the technical requirements for processes, procedures, practices and methods that have been adopted as standard (e.g., machinist, electrician, plumber, fork lift operator, chemical handler.) - **Inservice Inspection (ISI)**: (PV) A periodic inspection of a vessel or system while in service. If required, the vessel or system will be inoperative during the inspection. - **60.** <u>Inservice Inspection (ISI) Plan</u>: (PV) The plan is a list of inspections and tests and the frequency to be performed on the PV/S. - 61. <u>Integrated Procedure</u>: A procedure requiring the concurrence/approval of more than one contractor or KSC Primary Directorate Government organization, or other independent separate organizations involving test of interfacing systems, components, or elements. - **Interim Change:** Change made to an existing and approved TOP when there is insufficient time available to prepare a formal change (e.g., change pages). OMI deviations are one form of an interim change. - **3. Job Cards:** A Category I TOP designed for computer release through work control. - **Leak Before Burst (LBB):** (COPV) A failure mode such that any initial flaw in the Gr/Ep COPV liner will grow through the liner to cause leakage without burst of the overwrap. **Lethal Fluids:** (PV) Poisonous gases or liquids of such a nature that a very S&MAII amount of the gas or liquid mixed, or unmixed with air, is dangerous to life when inhaled. See ASME Code, Section VIII, Division 1, Paragraphs UW-2 and UCI-2, Division 2, Paragraph AG 301.1, and ASME B31.1, Appendix M. The following specification-grade fluids are to be considered lethal; additional fluids may be designated to be lethal at the discretion of the KSC PSM. - a. Aerozene 50 - b. Hydrazine - c. Monomethyl Hydrazine - d. Nitrogen Tetroxide - e. Unsymmetrical Dimethyl Hydrazine - **Lifting Devices and Equipment Manager (LDEM):** The individual, designated by the KSC Center Director, who is responsible for the overall management of the KSC Lifting Devices and Equipment Program. The LDEM resides in the Shuttle Safety and Mission Assurance Division. - **Local Control Area:** A controlled access area (usually less than a 50-foot radius of the hazardous task) in which control is manageable on location by the operation and maintenance contractor and safety personnel using visual/voice contact to ensure personnel safety. - **Major Control Area:** A controlled access area (usually greater than a 50-foot radius of the hazardous task) in which access management requires additional positive controls to ensure the safety of personnel. - **Maximum Allowable Stress Value:** (PV) The maximum unit stress permissible for any specified material that may be used in the design formulas. - **Maximum Allowable Working Pressure (MAWP)**: (PV) The maximum gage pressure permissible at the top of a completed vessel in its operating position for a designated temperature. This pressure is based on calculations for every element of the vessel using nominal thickness exclusive of allowances for corrosion and thickness required for loading other than pressure. It is the same as the design pressure for all cases where separate calculations are not made to determine MAWP. The MAWP is the basis for the pressure setting of the pressure relieving devices protecting the vessel. - 71. <u>Maximum Operating Pressure (MOP)</u>: (PV) The highest pressure at which a vessel or system component normally operates. This pressure is based on operating requirements and may not exceed the MAWP or design pressure. MOP is synonymous with MEOP (Maximum Expected Operating Pressure) or maximum working pressure. - **Maximum Work Time Deviation**: An authorized exceedance of the MWT provisions that is documented and approved prior to the exceedance. - **Maximum Work Time Violation**: Exceedance of MWT limits without preapproval. - 74. <u>Medical Treatment</u>: The following procedures are considered medical treatment. Any NASA work-related injury/illness for which the following type of treatment was provided or should have been provided is considered to be a NASA mishap: - a. Treatment of infection. - b. Application of antiseptics during second or subsequent visits to medical personnel. - c. Treatment of second or third degree burn(s). - d. Application of sutures (stitches). - e. Application of butterfly adhesive dressing(s) or sterile strip(s) in lieu of sutures. - f. Removal of foreign bodies embedded in the eye. - g. Removal of foreign bodies from wound if procedure is complicated because of depth of impediment, size, or location. - h. Use of prescription medications (except a single dose administered on first visit for minor injury or discomfort). - i. Use of hot or cold soaking therapy during second or subsequent visit to medical personnel. - j. Application of hot or cold compress(es) during second or subsequent visit to medical personnel. - k. Cutting away dead skin (surgical debridement). - I. Application of heat therapy during second or subsequent visits to medical personnel. - m. Use of whirlpool bath therapy during second or subsequent visit to medical personnel. - n. Positive X-ray diagnosis (fractures, broken bones, etc.). - o. Admission to a hospital or equivalent medical facility for treatment (not merely observation). - Mishap: An undesired and unexpected event that results in injury requiring more than first aid, occupational illness to personnel, and/or damage to property greater than \$1000.. Mishaps also include injuries or occupational illnesses resulting from repetitive stresses or exposures over a prolonged period of time. For purposes of investigation and reporting, mishaps are categorized as follows: Type A, Type B, Type C or Type D. - National Consensus Standard: (PV) Any standard, or modification thereof: (1) adopted or promulgated by a nationally recognized standards-producing organization using procedures that demonstrate to the Secretary of Labor for Occupational Safety and Health that those persons interested in or affected by the standard have reached substantial agreement on its adoption; (2) formulated so that an opportunity existed for diverse views to be considered; and (3) designated by the Secretary or the Assistant Secretary, after consultation with other appropriate Federal agencies. (NOTE: A standard, as defined, requires appropriate conditions or activities to provide a safe and healthful employment environment.) - 77. Non-Safety-Related Discrepancy: (PV) Any discrepancy that does not increase the potential for injury or death to personnel or damage to hardware. The following are considered non-safety-related discrepancies (others may be added at the discretion of the KSC PSM): - a. Panels/systems not properly identified. - b. Stainless steel piping or tubing not coated for corrosion protection. - c. Missing or illegible identification tags on components (except for relief devices, pressure gages, and flex hoses). - d. Discrepancies between documentation and hardware. - e. Minor corrosion of vessels, piping, components, or supports. - **78. Open Grain**: Exposed solid propellant. - **Operating or Working Temperature:** (PV) The metal temperature that will be maintained in the part of the vessel or system under consideration during normal operation. - **Operating Pressure:** (PV) The gage pressure at which a vessel (top of the vessel) or system normally operates. For a vessel, it shall not exceed MAWP, and for a system, it may not exceed the design pressure, except for occasional variations in design pressure. - **81.** Operations Planning Sheets: A form used for repetitive TOPs, which is released for documentation and control of a single performance of a TOP. - **Phase 1 Lightning Watch:** Conditions in the atmosphere, developing or observed, that is expected to produce, or is producing, lightning which will arrive at specified areas within 30 minutes. - **Phase 2
Lightning Warning:** Lightning observed or thunder heard within 5 nautical miles, or forecaster determines the threat of lightning is immediate. - **84.** Photographic Equipment: Cameras, still and video, and electronic and/or enclosed flash assemblies. - **Physical Agent:** Any environmental factor, such as noise, temperature extremes, vibrations, etc., which may cause harm or injury to personnel. - **Placard Procedure:** A simple procedure written or printed on a plaque attached to a facility or GSE end item that provides instructions for activating/deactivating that item. - 87. Pneumatic Test: (PV) A test of a pressure vessel or system in which a gas is introduced and pressurized to a designated level in a manner prescribed in the applicable code. (Reference Paragraph UG-100, ASME Code, Section VIII, Division 1, or Article T-4, ASME Code, Section VIII, Division 2, and Paragraph 345.5, ASME B31.1.) - **Pressure Cycle:** (PV) The initiation and establishment of new pressure levels followed by a return to the conditions that prevailed at the beginning of the cycle. Two types of pressure cycles are considered: - a. Full pressure (startup or shutdown) cycle: any pressure cycle which has atmospheric pressure as one of its extremes and normal operating conditions (not exceeding vessel MAWP/design pressure) as its other extreme. - b. Partial pressure (normal operating) cycle: any pressure cycle within the full pressure cycle, which is required for the vessel or system to perform its intended purpose. - **Pressure System:** (PV) An assembly of components under pressure, including vessels, piping, valves, relief devices, pumps, expansion joints, gages, etc. This includes systems containing hazardous or lethal fluids at any pressure above 0 MPa (gage) (0 lb/in² (gage)) and systems containing nonhazardous or nonlethal fluids above 0.1 MPa (gage) (15 lb/in² (gage)), unless otherwise specifically excluded. - **Pressure Systems Manager (PSM):** (PV) The individual designated by the KSC Center Director who is responsible for the overall management of the KSC Pressure Vessel/Systems (PV/S) Certification Program. The KSC PSM resides in the S&MA Institutional Safety and Quality Division. - **91. Pressure Test:** See Hydrostatic Test and Pneumatic Test. - 92. Pressure Vessel: (PV) Any vessel used for the storage or handling of gas or liquid under positive pressure. Included in this definition are components of systems (e.g., heat exchanger shells and drying towers, and other shell structures) for which the rules of the ASME Code, Section VIII, would apply. Vessels containing hazardous or lethal fluids at any pressure above 0 MPa (gage) (0 lb/in² (gage)), and vessels containing nonhazardous or nonlethal fluids above 0.1 MPa (gage) (15 lb/in² (gage)) are included unless otherwise specifically excluded. - **93. Pretask Briefing:** A briefing held immediately prior to the start of (a) hazardous sequence(s), which details the hazard(s) and objective(s) associated with that particular sequence. - **Pretest Briefing:** A briefing held prior to the start of a hazardous operation with a major control area, which details the hazard(s) and objective(s) of the operation and confirms that all operational and support elements are ready. - **95.** Processing Mishap/Close Call: A mishap or close call, which occurs during the act of ground processing of flight hardware. **Program/Project or Directorate Organization:** The Government/contractor organization having direct responsibility for performing a task associated with: assembly/ disassembly; checkout, maintenance; servicing; repair; and operation of ground support equipment or flight hardware/systems. - Proof Tests to Establish Maximum Allowable Working Pressure: (PV) Pressure test which establishes the maximum allowable working pressure of a vessel, system, or component thereof, may be used: (1) When the strength cannot be computed with a satisfactory assurance of accuracy; (2) When the thickness cannot be determined by means of the design rules of the applicable code or standard; or (3) When the critical flaw size to cause failure at the certified pressure cannot be identified by other nondestructive test methods. This test is to be performed in a manner equivalent to one of the methods specified in Paragraph UG-101 of the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, latest edition. Proof tests may be performed only upon approval of the KSC PSM. - **98. PV/S Representative:** (PV) The individual(s) assigned to represent an organization in all matters relating to PV/S and shall be identified to the PSM. - **99.** Radio Frequency (RF) Silence: When all RF transmitters/emitters on the SSV, payloads, associated flight equipment, or GSE within the applicable facility, including LC-39 A/B, are in the power-off position. - **100.** Rated Load: The static weight the basic equipment can safely support or lift. - **101.** Real-Time Decision/Action: A real-time decision or action is one that affects personnel safety or NASA operational mission accomplishment by causing: - a. The potential to deviate from a normal or standard practice. - b. A minimum amount of time or no time to functionally verify the adequacy of the real-time decision or action and its effect to be performed. - **Recall System:** (PV) A system which tracks selected components subject to periodic calibration, inspection, or test. Components included in recall systems are relief valves, pressure gages, and flex hoses. - **Recertification:** (PV) The procedure (appropriate tests, inspections, examinations, analyses, and documentation), which qualifies a previously certified vessel or system to continue or be returned to operation at a designated pressure. - **Recertification Interval:** (PV) The time between recertifications when a certified status is maintained through documented periodic examinations and inspections to determine acceptable vessel or system condition. This time period must me determined when the ISI plan is developed, and the length of this period will depend on the results of the initial and subsequent inspections, tests, and engineering analyses. - **Reissue:** A revised edition of an existing approved TOP that contains updated material, or has a different effectivity, to which the OMI or change applies. - **Repair**: (PV) The work necessary to restore a pressure vessel or system to a safe and satisfactory operating condition, provided there is no deviation from the original design. - **Rerated Vessel or System:** (PV) (1) A vessel or system judged to be unsafe, unsuitable, or unnecessary for continued operation at its original design pressure and/or temperature limits. (2) A vessel or system recertified to operate at a lesser or greater pressure and/or temperature limit relative to its original designs. - **108. Revision:** A modification of information contained in an approved existing TOP. - **Safety Concurrence:** The consent required from the safety organization, having operational jurisdiction, prior to start of procedures containing hazardous operations, prior to hazardous steps or sequences, prior to the alteration of hazardous steps/sequences, and prior to opening the control area for controlled work at the conclusion of hazardous activities. - **Safety Coverage:** The presence of a Safety professional, or designee, during operations as determined by an assessment as follows: - a. Full-time Coverage: The safety professional will be onsite to provide a goto-proceed with the operation, monitor operations and controls to ensure compliance with safe performance and provide technical safety assistance as needed during the entire operation. - b. Part-time Coverage: The safety professional shall be onsite to provide a go-to-proceed with the operation, periodically and at the end to reopen the area. - c. Optional Coverage: The safety professional is not required for onsite coverage. - **Safety Critical:** Any condition, event, operation, process, equipment, or system that could cause or lead to severe injury, major damage, or mission failure if performed or built improperly, or allowed to remain uncorrected. - **112. Safety Factor:** The ratio of a load that predicts a failure to a rated load. - Safety Professional: Person meeting the Office of Personnel Management standards for such occupations defined in 29CFR 1960.2(s) (Definitions) for Government operations or equally qualified military, agency or nongovernment for contractor operations. NASA KSC Safety shall be responsible for determination of equally qualified personnel. Safety Specialists, Representatives, and Inspectors shall have competence to recognize Safety and/or health hazards in the workplace. - **Safety-Related Hardware Discrepancy:** (PV) Any hardware discrepancy that could increase the potential for injury or death to personnel or damage to hardware. The following are considered safety-related discrepancies: - a. Primary relief device set above the certified MAWP or design pressure. - b. Relief device with insufficient flow capacity. - Relief device past due for calibration. - d. Relief device with missing or illegible identification tag. - e. Pressure gage out of calibration or past due. - f. Obvious physical damage (e.g., crushed or kinked flexhose, dented or nicked piping/tubing/vessels, or heavy corrosion of vessels/piping). - g. Not labeling the vessel's MAWP/service fluid. - 115. <u>Safety-Relief Device Set Pressure</u>: (PV) The pressure at which a pressure relief device is set to operate. Set to operate means the set pressure of a relief valve or spring-loaded nonreclosing device, the bursting pressure of a rupture disk device or the breaking pressure of a breaking pin device. (Reference Paragraphs UG-125 and UG-134, ASME Code, Section VIII, Division 1, and Part AR, ASME Code, Section VIII, Division 2.) - **Safety or Safety Representative:** The term Safety is used without context to contractor or NASA personnel.
When the phrase "NASA Safety" is used, it shall be construed to mean a Government Safety representative only. - **117. Shall:** A mandatory S&MA requirement. Noncompliance with a "shall" statement requires approval of a variance. - **Should:** An S&MA rule/requirement that is recommendation (guidance). The advisability of a "should" statement depends on the specific facts in a given situation. Implementation of a "should" statement is at the discretion of the responsible KSC program/project or directorate organization. - **Software:** Computer programs developed to operate, control, service, or check out flight (including payload systems/subsystems) and/or ground support systems/ equipment hardware. - **Splash (KSC Vapor Suit)**: Two-piece garment consisting of a hooded pullover blouse and trousers with boots and lightweight, long gauntlet gloves. - **Sub-task TOP**: A procedure used to perform work when called up by another TOP (usually an integrated TOP). - **Sub-task-only TOP:** A procedure preplanned to be performed only as a subtask to a controlling procedure and may contain limited Safety controls. **System Certification Pressure:** (PV) The maximum pressure that has been applied to a system; however, no system element can have its MAWP exceeded when the certification pressure has been applied. - **System Safety:** Application of engineering and management principles, criteria, and techniques to optimize risks within the constraints of operational effectiveness, time, and cost throughout all phases of the system life cycle. - **Task Leader:** A person who has been trained and certified/stand boarded by his organization for a particular task. - **Technical Operating Procedure (TOP):** A written communication that identifies and directs work to be performed and provides the detailed instructions necessary to accomplish a task. - a. Category I TOP: Provides detailed procedures for the operation, maintenance, and verification of ground support systems and equipment. Instructions for assembly and disassembly, checkout, servicing, verification, handling, and transportation of the space vehicle and components including payload systems, subsystems, and experiments during prelaunch, launch, and postlaunch operations are also provided. - Category II TOP: Provides engineering instructions, authorizes work, establishes work control methods, in order to accommodate special tests or authorize temporary installations, removals, or replacements. Category II procedures shall not be used to change or replace Category I procedures. - **Threshold Limit Value-Time Weighted Average (TLV-TWA)**: The time weighted average concentration for a normal 8 hour workday and a 40 hour workweek, to which workers may be repeatedly exposed, day after day, without adverse effect. - **Trained Inspector:** (COPV) A person trained specifically in the detection of visual damage of COPVs and familiarized with the NDE methods and results that could be used to aid in the interpretation of visual damage. JSC White Sands Test Facility typically conducts this training. - Type A Mishap: A mishap causing death, permanent total disability, hospitalization (within a 30 day period from the mishap) of three or more persons for other than observation, and/or damage to equipment or property and/or mission failure resulting in loss equal to greater than \$1 million. Mishaps resulting in damage to aircraft, space hardware, or GSE that meet these criteria are included, as are test failures in which the damage was unexpected or unplanned. - **Type B Mishap:** A mishap resulting in permanent partial disability to one or more persons, in-patient hospitalization of 2 or less personnel, damage to equipment or property and/or mission failure resulting in loss equal to or greater than \$250,000, but less than \$1 million. Mishaps resulting in damage to aircraft, space hardware, Type C Mishap: A mishap resulting in damage to equipment or property, or mission failure resulting in loss equal to or greater than \$25,000, but less than \$250,000, and/or causing occupational injury or illness that results in a case involving day(s) away from work or restricted duty. Mishaps resulting in damage to aircraft, space hardware, or GSE that meet these criteria are included, as are test failures in which the damage was unexpected or unplanned. **Type D Mishap:** A mishap consisting of personal injury requiring medical treatment greater than first aid but without any lost time or restricted duty and/or property damage or mission failure resulting in loss equal to or greater than \$1000, but less than \$25,000. Permanent occupational hearing loss in excess of 25 decibels in either ear is classified as an incident. #### 133. Reserved - **Unsafe Vessels or Systems:** (PV) These are vessels or systems, which have been determined to be unsafe for service. - **Yacuum System:** (PV) An assembly of components under vacuum (internal pressure less than that of the surrounding atmosphere) including vessels, piping, valves, relief devices, pumps, expansion joints, and gages. - **Yacuum Vessel:** (PV) A vessel in which the internal pressure has been reduced to a level less than that of the surrounding atmosphere. - **Variance:** Documented and approved permission to perform some act or operation contrary to established requirements. The two types of variances are Deviations and Waivers. - 138. <u>Visible damage</u>: (COPV) Anomalies that are visible to the naked eye under not less than 15-foot candles at a distance no greater than 24 inches and no less than a 30 degree angle. Lighting up to 50-foot candles may be used for the detection or study of S&MAII anomalies. - **Waiver:** A documented variance that authorizes departure from a specific S&MA requirement, where an increased level of risk has been documented and accepted. - **Warning:** A notation which if not adhered to or observed could result in loss of life, personal injury, or exposure. - **141. Workday**: Any day a person reports to work, regardless of the amount of time spent on the job. The workday begins when a person reports to work and ends when he or she leaves. - **Workweek:** Any 7 day period beginning on Sunday and ending on Saturday, or other 7 day period, as specified and documented by an organization for accounting purposes. or GSE that meet these criteria are included, as are test failures in which the damage was unexpected or unplanned. Section 1: GENERAL REQUIREMENTS # **CHAPTER 1: GENERAL** ### 1.0 INTRODUCTION It is the goal of NASA and KSC to provide safe and reliable systems to avoid loss of life or injury to personnel and to avoid loss or damage to program hardware and KSC facilities. To achieve this goal, KSC shall strive to provide and maintain safe reliable Ground Support Equipment (GSE) and facility systems and to perform operations in a manner that minimizes risk. The Safety and Mission Assurance (S&MA) Directorate is the organization which ensures that all KSC Safety activities are planned, implemented, managed, and coordinated with all other KSC program/project and directorate organizations for an effective and integrated safety effort. # 1.1 PURPOSE The purpose of these procedural requirements is to specify and establish safety policies and requirements essential during design, operation, and maintenance activities at KSC and other areas where KSC has jurisdiction. ### 1.2 APPLICABILITY AND SCOPE The provisions of these procedural requirements apply to all organizational elements at KSC, to their associated contractors and subcontractors, to service providers to the extent of their contracts, and to other Government agencies and their contractors operating at KSC. These provisions are also applicable at offsite facility areas where KSC has operational responsibility. In joint-use facilities (e.g., a facility used both by NASA and the Air Force), when there is a difference in safety requirements, the more stringent requirement shall apply. ## 1.3 <u>AUTHORITY AND RESPONSIBILITY</u> - a. Final authority and responsibility for implementing the NASA Safety Program at KSC rests with the Center Director. KSC program/project and directorate organizations have responsibilities for developing Safety, Reliability, Maintainability and Quality Assurance (SRM&QA) programs at the Center. The Center Director has delegated the responsibility for assessing and ensuring compliance with SRM&QA programs at the Center to the Director of Safety and Mission Assurance (S&MA). These responsibilities, and those assigned to other Center organizational elements, are set forth in detail in KSC-NASA Policy Directive (KNPD) 8700.1, KSC Safety Mission Assurance Policy Directive. - b. The interpretation of the requirements in these procedural requirements is the responsibility of the appropriate program/project and directorate S&MA organizations. The Director of S&MA (SA) shall resolve conflicts arising from these interpretations. ### 1.4 COMPLIANCE WITH FEDERAL, CONSENSUS, AND NASA STANDARDS a. Federal Agencies are mandated to provide a safe workplace for their employees in accordance with the Occupational Safety and Health Act, 1970, per Executive Order 12196, "Occupational Safety and Health Programs for Federal Employees," dated February 26, 1980, and with 29 CFR 1960 "Basic Program Elements for Federal Employee Occupational Safety and Health Programs and Related Matters." - b. Applicable Industry Standards shall be used to the extent practical to meet NASA and Occupational Safety and Health Administration (OSHA) design and operational needs. - c. Unique NASA operations, materials, facilities, equipment, procedures, and practices have or may require the establishment of NASA safety standards. Compliance with NASA safety standards shall be used to the greatest extent practical to meet NASA's design and operational needs. - d. A listing of mandatory and reference documents is provided in the table of contents of this KNPR. ### 1.5 CHANGE
RECOMMENDATIONS Recommended changes to KNPR shall be in accordance with the KSC Directives Process, KDP-KSC-P-1058. Changes shall be submitted on KSC Form 4-348, "Document Change Recommendation" (DCR), to the Director of S&MA. The form shall identify the exact language of the proposed change and the rationale for the change. The initiator shall also coordinate the proposed change(s) through the affected organizations and obtain concurring signatures. # 1.6 Safety Variance Processing (Rewritten & inserted March 15, 2005) ### a. Overview The primary objective of the safety variance processing procedural requirements is to define the roles and requirements of Center management and KSC program/project and Safety and Mission Assurance (S&MA) Directorate personnel in such a way that KSC will maintain control over: - (1) Agency S&MA policy and requirements that it administers, and - (2) Center S&MA policy and requirements that it sets. Whenever it is deemed necessary to vary from established safety requirements in order to accomplish a task, risk management techniques shall be used and documented so that informed decisions can be made regarding the approval or disapproval of the safety variance. ### b. Applicability The safety variance processing procedural requirements documented herein implement the requirements of NASA Procedural Requirements (NPR) 8715.3, NASA Safety Manual, and apply whenever requirements of Center safety documentation such as Kennedy NASA Policy Directives (KNPDs) and Kennedy NASA Procedural Requirements (KNPRs); higher-level Agency requirements such as NASA Policy Directives [NPDs], NASA Procedural Requirements [NPRs] and NASA Safety Standards [NSSs]); or other Federal regulations cannot be met. At KSC, it is expected that all safety requirements be met and that all employees report unsafe conditions or acts, work with management to resolve them, and to stop imminently dangerous activities. Proposed safety variances may be granted after completing an assessment of the risk associated with granting the safety variance, so that management can make an informed | Consequence (Severity) Classification Definitions (Example) | | | | | | | |---|--|--|----------------|--|---|--| | Level | 1 | 2 | 3 | 4 | 5 | | | | Very Low
(Minimal) | Low | Moderate | High
(Critical) | Very High
(Catastrophic) | | | Safety | No injury or
significant
damage to
flight HW/SW
or GSE | Slight injury or
small damage
to flight
HW/SW or
GSE | injury/illness | Permanent
disability or
major damage
to flight
HW/SW or
GSE | Loss of life,
flight HW/SW
or GSE | | decision regarding its acceptability. In addition, safety variances shall be processed in advance except as noted in paragraph 1.6f, Real-Time Operational Considerations and the exception documented below. Failure to adhere to safety requirements without an approved safety variance is considered a violation and may be subject to disciplinary action. <u>Exception</u>: Approval of Noncompliance Reports (NCRs) submitted to the KSC Safety Engineering Review Panel (KSERP) is hereby delegated to the KSC Ground Safety Review Panel (GSRP) Chairperson. ### c. Definitions The following definitions apply to the KSC safety variance processing procedural requirements established herein and are in accordance with NPR 8715.3, NASA Safety Manual. <u>Accepted Risk</u>: A hazard whose risk is not completely mitigated and that has been accepted by top program and safety management <u>Controlled (Risk) Hazard</u>: The likelihood of occurrence or severity of the associated undesirable event has been reduced to an acceptable level through the imposition of appropriate, readily implementable, verifiable controls, resulting in minimal residual risk. <u>Consequence (Severity)</u>: An assessment of the worst-case credible potential result(s) of a risk, without any controls in place. The following is an example of consequence classifications definitions. Hazard: Existing or potential condition that can result in or contribute to a mishap. <u>Hazard Analysis</u>: Identification and evaluation of existing and potential hazards, and the recommended mitigation for the hazard sources found. <u>Probability (Likelihood)</u>: The likelihood that an identified hazard will result in a mishap based on an assessment of such factors as location, exposure in terms of cycles or hours of operation, and affected population. Probability (likelihood) takes into account that the hazard controls are in-place and effective. The following is an example of probability classification definitions. | Probability (Likelihood) Classification Definitions (Example) | | | | | | | | |---|---|-----|---|---|--|--|--| | Level | 1 | 2 | 3 | 4 | 5 | | | | | Very Low | Low | Moderate | High | Very High | | | | Guidance for
Probability
Level
Selection | Guidance for Probability of occurrence is very low. Existing processes and mitigation efforts Probability of occurrence is low. Existing processes and mitigation efforts are usually | | Probability of occurrence is moderate. Existing processes and mitigation efforts may prevent this risk scenario, but additional actions will be required. | Probability of occurrence is high. Existing processes and mitigation efforts cannot prevent this risk scenario; a different process or mitigation effort might. | Probability of occurrence is very high. Existing processes and mitigation efforts cannot prevent this risk scenario; no alternative processes or mitigation efforts are available. | | | Residual Risk: Risk that remains from a hazard after all mitigation and controls have been applied. <u>Risk</u>: The combination of (1) the probability (qualitative or quantitative) that a program or project will experience an undesired event such as cost overrun, schedule slippage, safety mishap, or failure to achieve a needed technological breakthrough; and (2) the consequences, impact, or severity of the undesired event were it to occur. <u>Risk (Safety) Assessment</u>: Process of qualitative risk categorization or quantitative risk (safety) estimation, followed by the evaluation of risk significance. The standardized Agency 5 x 5 risk matrix is shown below. <u>NOTE</u>: Program-accepted 5 x 5 risk matrices (e.g., Space Shuttle Program and International Space Station Program) whose definitions of likelihood (probability) and consequences (severity) differ from the example Agency definitions contained herein may be used, if the program definitions of likelihood and consequence categories are provided within their risk assessment. # Standardized Agency 5 X 5 Risk Matrix <u>Variance</u>: Documented and approved permission to perform some act or operation contrary to established requirements. The two types of safety variances are deviations and waivers. <u>Deviation</u>: A variance that authorizes departure from a particular safety requirement where the intent of the requirement is being met through alternate means that provide an equivalent level of safety with no additional risk. <u>Waiver</u>: A variance that authorizes departure from a specific safety requirement where a certain level of risk has been documented and accepted. # d. Safety Variance Generation When Center, or higher-level Agency or Federal safety requirement(s) cannot be met, the initiating organization (contractor or NASA) shall process a safety variance request. When the unmet requirement(s) resides in both a Center and a higher-level safety document, the safety variance will be generated against the requirement in the higher-level document. To generate and submit a safety variance request (reference KDP-KSC-P-3614): # (1) Acquire a KSC safety variance number Safety variance number assignments may be obtained by the initiating organization or appropriate S&MA Division in the S&MA Directorate directly from the safety variance database or may be obtained from the S&MA Integration Division within the S&MA Directorate. The S&MA Integration Division is also responsible for managing safety variance processing (review for content and process compliance) and for entering data into the KSC Safety Variance and Noncompliance Database as needed, if it has not been entered by the initiating organization or the appropriate S&MA Division in the S&MA Directorate. (2) Fill out the request form and perform risk assessment System safety is an integral part of the overall program risk management decision process. The risk assessment process is a principal factor in the understanding and management of technical risk. Hazards are identified and resultant risks are assessed by considering probability of occurrence and severity of consequence. The risk assessment shall include a 5 x 5 risk matrix with defined probability (likelihood) and consequence (severity) categories. All safety variance requests shall be accompanied by documentation (provided by the initiating organization), including comments
from any affected employees or their representatives. Utilizing the KSC Safety Variance Form (KDP-KSC-F-3614), document the variance data elements. This form is available in KSC Business World (https://businessworld.ksc.nasa.gov/) or from the S&MA Integration Division within the S&MA Directorate (see KDP-KSC-P-3614). Safety variances to higher-level documents (e.g., Agency or Federal) may require additional, Government-provided risk assessments or information prior to submittal for final risk acceptance. - e. Safety Variance Coordination/Approval - (1) The Safety Variance Coordination/Approval authorities are documented in Table 1-1 contained herein. Safety variances shall be approved prior to execution of operations except as noted in paragraph 1.f below. Coordination and approvals (i.e., final risk acceptance) for safety variances is based on the level of the requirement document being considered. Final risk acceptance (concurrence via signature) shall be made by the appropriate NASA/KSC program/project or organizational Director(s), or their pre-approved (in writing) designee (not to be the S&MA organization). The KSC S&MA Director (or pre-approved [in writing] designee) shall review and concur on waivers (safety variances with increased risk) against KSC requirements; and on all safety variances deviations and waivers) against higher level documents. - (a) For safety variances against contractor-imposed safety requirements, the contractor management is the approval and final risk acceptance authority. The appropriate S&MA Division within the S&MA Directorate shall surveil and complete periodic audits of approved safety variances against contractor-imposed safety requirements. - (b) For safety variances against NASA/KSC safety requirements, the Director of the initiating organization is the approval and final risk acceptance authority. Signatories in the S&MA Division shall include the Chief Safety Officer (deviations only), the Ground Risk Review Board Chairperson (all safety variances) and the Director of S&MA for safety variances with increased risk (waivers only). In other words, 2 signatures are required within the S&MA Directorate. For deviations (safety variances with no increased risk), the KSC Chief Safety Officer and the KSC Safety Engineering Review Panel (KSERP) Chairperson sign the variance; and for waivers (safety variances with increased risk), the KSERP Chairperson and the S&MA Director sign the variance. - (c) For safety variances against NASA/Headquarters policy documents (NPDs), the Enterprise Associate Administrator (AA) or the NASA HQ Institutional Program Officer (IPO) is the approval authority and the Center Director is the final risk acceptance authority. For NASA Headquarters procedural requirements documents (NPDs), the Center Director is the approval and final risk acceptance authority and NASA Headquarters/QS receives a copy of all approved safety variances post-operation. (d) For safety variances against other Federal Agency documents, the issuing Federal Agency is the approval authority and the Center Director is the final risk acceptance authority. - (e) In the case of a safety variance affecting more than one NASA/KSC program, project or organization, all involved program, project or organizational Directors shall provide approval and final risk acceptance via signature. - (2) The appropriate S&MA Division within the S&MA Directorate, in conjunction with the initiating organization, shall coordinate the review and final risk acceptance for all safety variances and renewals. This includes reviewing the accompanying risk assessment and providing concurrence. For all safety variance renewals, the Chief Safety Officer shall review only, and the Ground Risk Review Panel Chairman and the S&MA Director shall review and concur via signature. When the review of the associated risk assessment results in a non-concurrence, the reviewer shall provide detailed rationale for the disapproval recommendation. In addition, the appropriate S&MA Division within the S&MA Directorate shall semi-annually present a summary of all active safety variances at the KSC Safety and Health Council. The initiating organizations shall attend to support any detailed discussion on any of the safety variances. - (3) Proposed safety variance submittals involving Cranes/Lifting Devices; Explosives, Pyrotechnics, and Propellants; Pressure Vessels (ground fixed and mobile); and Lightning/Grounding shall be routed for review and concurrence (via signature) to the appropriate safety program manager. Safety program managers at KSC include the KSC Lifting Devices and Equipment Manager (Shuttle S&MA Division); the KSC Explosives Safety Manager (S&MA Institutional Safety and Quality Division); the KSC Pressure Systems Manager (Spaceport Services Propellants and Life Support Branch); and the KSC Lightning Safety Assessment Committee Chairman (Shuttle S&MA Division). If these types of variances involve NASA employees from an operational or risk exposure perspective, the American Federation of Government Employees (AFGE) Union will be notified and shall provide concurrence via signature (or non-concurrence with appropriate rationale). - (4) The approval duration for safety variances shall be based on the operational event and circumstances involved, and shall not exceed one year. At the end of this time period, the variance expires. In situations where it is necessary to renew the variance for an additional time period, the safety variance must be resubmitted in accordance with these procedural requirements. In addition, progress made toward future compliance with the unmet requirement(s) will also be considered during the safety variance review process. Requests of this nature shall be accompanied by detailed rationale describing why the specific unmet requirement(s) should remain intact. All renewals of safety variances (i.e., extensions beyond the initial approved duration, not to exceed one year) shall also have the concurrence of the KSC Director of S&MA. ### f. Real-Time Operational Considerations In the case of off-shift/real-time safety variances against KSC or NASA level requirements, it is the responsibility of the initiating organization (contractor or NASA) to obtain, as a minimum, a safety variance number, required risk assessments, concurrence from the appropriate KSC S&MA Division representative, and review and final risk acceptance (may be verbal) from the appropriate NASA/KSC program/project or organizational Director. The initiating organization shall complete the safety variance process outlined herein by the end of the next full shift. For safety variances against requirements of other Federal Agency documents, the NASA Headquarters Office of S&MA (OSMA) shall additionally concur. During terminal launch countdown, safety variances may be approved on a recorded net. This approval will include a discussion of the risk assessment. Completion of the approved safety variance application shall follow within 24 hours or by the close of business on the next regular business day. ### g. Safety Variance Recordkeeping After safety variance processing has been completed (final risk disposition obtained), the S&MA Integration Division within the S&MA Directorate shall ensure that all safety variance data (and accompanying risk assessment) is entered into the KSC Safety Variance and Noncompliance Database (enter the data if the initiating organization or the appropriate S&MA Division has not already entered the data). Each NASA/KSC program/project or directorate organization shall maintain a file of all approved safety variances (originals), and provide a copy to the S&MA Integration Division. The S&MA Integration Division shall also maintain a file of all approved safety variances (the copies). Procedural and/or operational controls that are required by the safety variance acceptance rationale shall be tracked by the S&MA Integration Division in the safety variance database. The safety variance initiating organization is responsible for implementation and maintenance of procedural and/or operational controls specified as requirements by the safety variance, and for their own closed loop tracking and timely safety variance renewal, when required. # TABLE 1-1 SAFETY VARIANCE COORDINATION/APPROVAL PROCESS KNPR 8715.3 Rev. Basic-2-A | DOCU-
MENT
(Note 1) | Initiating
Organization
(NASA or
Contractor)
(Note 3) | KSC S&MA
Division
(Notes 4 & 6) | KSC
Chief
Safety
Officer
(Note 4) | KSC Safety
Engineerin
g Review
Panel
(KSERP)
(Note 4) | KSC S&MA
Director
(Notes 4&9) | Director of
NASA
Initiating
Organization
(Notes 4&7) | Risk A
Center Director
(CD)
(Notes 4&7) | Acce NASA e
Headquarter
s | Federal
Issuing
Agency | |---|---|--|--|--|---|--|--|---|------------------------------| | Contractor
(Note 2) | Perform risk
assessment.
Approve
(accept risk)
or
disapprove | Surveil & conduct periodic audits of approved variances | N/A | Kennedy
Space
Center
(KNPD,
KNPR) | Perform risk
assessment
(Note 5) | Concur or
non-concur;
surveil & conduct
periodic audits of
operating
Directorate's safety
variance process |
Concur
or
Non-
Concur
(deviations
only) | Concur
or
Non-concur | Concur
or
Non-concur
(waivers only | Approve
(Accept Risk)
or
Non-concur | N/A | N/A | N/A | | NASA
Policy
(NPDs) | Perform risk
assessment
(Note 5) | Concur or
non-concur;
surveil & conduct
periodic audits of
operating
Directorate's safety
variance process | Review | Concur
or
Non-concur | Concur
or
Non-
concur | Concur
or
Non-concur | Approve
(Accept Risk) or
Non-concur | Code QS
review
(post-
operation) | N/A | | NASA
Procedural
Require-
ments | Perform risk
assessment
(Note 5) | Concur or
non-concur;
surveil & conduct
periodic audits of
operating
Directorate's safety
variance process | Review | Concur
or
Non-concur | Concur
or
Non-
concur | Concur
or
Non-concur | Final Risk
Acceptance or
non-concur | Enterprise AA
or Institutional
Program
Officer (IPO)
Approve or
Disapprove | N/A | | Issuing
Federal
Agencies | Perform risk
assessment
(Note 5) | Concur or
non-concur;
surveil & conduct
periodic audits of
operating
Directorate's safety
variance process | Review | Concur
or
Non-concur | Concur
or
Non-
concur | Concur
or
Non-concur | Concur
(Accept Risk)
or
Non-concur | Concur
or
Non-concur
(Note 8) | Approve
or
Disapprove | NOTES: see next page # TABLE 1-1 SAFETY VARIANCE COORDINATION/APPROVAL PROCESS KNPR 8715.3 Rev. Basic-2-A # Notes for Table 1-1: - 1. When the unmet requirement resides both in a Center S&MA document and a higher-level document, the safety variance will be generated against the requirement in the higher-level document. For variances that list unmet requirements in multiple documents (e.g., Contractor & Center/Agency), final Government risk acceptance only applies to the Center/Agency requirements. - 2. When the unmet requirement resides only within Contractor internal documents, the variance may be processed using their own internal process and forms. - 3. It is the responsibility of the initiating organization to implement procedural and/or operational controls required by the safety variance, and to track safety variances using a closed loop system including timely renewal. - 4. When the review of the risk assessment accompanying the proposed safety variance results in a disapproval recommendation (i.e., a non-concurrence with the variance request), the reviewer shall provide detailed rationale for the disapproval recommendation. The KSC Chief Safety Officer reviews all safety variances and renewals, but only concurs via signature on deviations (safety variances with no increase in risk). The KSC Safety Engineering Review Panel (KSERP) Chairperson concurs via signature for all safety variances and renewals. The S&MA Director concurs via signature for all waivers (safety variances with increased risk) and all renewals. - 5. May require additional, Government-provided risk assessments prior to submittal for final risk acceptance. - 6. Proposed Safety Variances involving Cranes/Lifting Devices; Explosives, Pyrotechnics, and Propellants; Pressure Vessels (fixed or mobile); or Lightning/Grounding shall be routed for review and concurrence (via signature)/non-concurrence to the appropriate safety program manager. Safety program managers at KSC include the KSC Lifting Devices and Equipment Manager, and the KSC Explosives Safety Manager, the KSC Pressure Systems Manager, and the KSC Lightning Assessment Committee Chairperson. - 7. The Center Director is the final risk acceptance authority for safety variances against NASA HQ documents and other Federal Agency documents. - 8. NASA HQ interfaces and negotiates with the Federal Issuing Agency. - 9. The S&MA Director (or pre-approved [in writing] designee) shall review and concur/non-concur to all safety variances against NASA and other Federal Agency requirements. # 1.7 SAFETY JURISDICTION - a. All personnel shall have the right to stop work, move/ evacuate occupants, or require additional safeguards should conditions warrant such action. - b. Safety personnel shall have the right to enter any facility and to monitor any operation(s). # **CHAPTER 2: WEATHER** #### 2.0 **GENERAL** - Real-time warnings shall be issued for the purpose of protecting personnel and property from the hazards associated with adverse weather. - Advisories shall be provided to personnel conducting hazardous operations with b. sufficient lead-time to secure the operation before the forecasted weather system arrives. - Detailed weather requirements are identified in Operations and Maintenance Instructions (OMI) S0018 "Adverse Environment and Lightning Monitoring at LC-39." #### 2.1 ADVERSE WEATHER NOTIFICATION - The Shuttle Flight Operations Contractor (SFOC) shall notify the Joint Base Operations Support Contractor (JBOSC) and the Checkout Assembly & Payload Processing Services (CAPPS) of adverse weather conditions affecting KSC operating areas. - The SFOC shall make an all-area page, preceded by a special tone, announcing the adverse weather affecting KSC operating areas and shall repeat this page every 30 minutes until the advisory is terminated. - Adverse weather shall be announced on all KSC radio nets by the respective Duty C. Officer (DO)/Monitor and repeated every 30 minutes until the advisory is terminated. - d. Termination of adverse conditions shall be announced in a similar manner. #### 2.2 **ADVERSE WEATHER** - a. Lightning - Lightning activity detected at or near KSC shall be defined as a two-phase process: (1) - Phase 1 lightning notification shall be the "Lightning Advisory." (a) - (b) Phase 2 lightning notification shall be the "Lightning Warning." - (2) To avoid damage or injury from lightning strikes: - (a) Personnel working outside a lightning protected area shall be notified of Phase 2. - Personnel working inside a facility shall not be exposed to wiring that may conduct (b) electricity from a lightning strike. - (c) All facility doors shall be closed when a Phase 2 notification is made. - (d) Flight hardware shall be protected from lightning strikes. - (3) The program/project or directorate organization shall establish lightning strike protection controls based upon a safety engineering assessment of the following criteria: - Personnel exposure outside a lightning protected facility or area. (a) - (b) Flight hardware exposure, area exposed. - Move of flight hardware, hazardous chemicals, and explosives outside a lightning (c) protected facility or area. - Protection of personnel performing hazardous operations inside or outside a lightning protected facility or area. - b. Wind The program/project or directorate organization shall establish wind restrictions based upon a safety engineering assessment of the following criteria: - (1) Personnel exposure. - (2) Sail areas. - (3) Mass. - (4) Wind speed. # **CHAPTER 3: PERSONNEL** # 3.0 **GENERAL** The number and functions of personnel required to perform a hazardous operation shall be defined in the applicable Technical Operating Procedure (TOP). # 3.1 PERSONNEL CONTROLS Personnel controls shall be implemented as follows: - a. Access shall be limited for hazardous areas and/or operations. - b. Safety control areas shall be clearly marked to indicate the control boundary. Personnel shall not enter a safety-controlled area unless authorized to do so by the controlling authority. Personnel shall not remove or alter posted safety signs or ropes. Only the organization installing the safety sign or rope shall be authorized to remove or alter it. - c. Personnel shall not enter an area that is posted with a radiation warning sign or barrier unless specifically authorized to do so by the radiographer responsible for the area. - d. All hazardous operations shall require the buddy system as defined in the Glossary. - e. Personnel working in or visiting processing areas and support testing facilities shall adhere to the following clothing requirements: - (1) On structures and areas with grate flooring/ exposed cables, shoes shall cover the entire foot, be low- and wide-heeled, and have soles heavy enough to provide adequate protection. - (2) In areas/facilities where hazardous liquids or fuels are handled/processed, canvas or cloth sneakers, porous shoes, "tank tops," mesh shirts and/or shorts shall be prohibited. - f. While hazardous operations are on-going or hazardous conditions are present, persons incapable, without the assistance and/or resistance of others, of ascending and/or descending ladders or stairs within both the direct and/or alternate evacuation routes from the hazardous facility shall not be permitted access requiring such ascent or descent. An individual may not be permitted access to work in any facility conducting hazardous operations if the individual is not capable of performing the essential functions of a position in question, either with or without reasonable accommodation, without endangering the health and safety of that individual or others. - VAB High Bay Roof Access for Non-operational Personnel g - Only certain non-operational personnel considered "high level KSC stakeholders" shall (1) be allowed VAB roof access as approved by senior management on a case-by-case basis. The following requirements and restrictions apply. - (a). Approvals Access to the VAB roof shall be coordinated by the sponsoring organization and approved in advance and in writing by: i. The Director of Shuttle Processing OR the Director of External Relations, ### AND ii. The Chief, Institutional Safety and Quality Division, or designee. The approval letter shall include the date, anticipated time of the visit, the size of the group and any other pertinent information, and be distributed to the Chief Test Conductor (CTC) Office, NASA Test Director (NTD) Office, the VAB Site Manager, VAB Safety, and USA
Operations Security. Any last minute changes to group size (increases) shall strictly adhere to the requirements stated herein. - (b). **Escort Requirements** - Visitors shall be accompanied by a KSC sponsoring organization escort, and the VAB Site Manager or VAB Site Safety appointed designee. - ii. Escorts shall be trained in VAB emergency evacuation procedures, including locations of the Marshalling Areas. - iii. Escorts shall possess a means of communication such as a 2-way radio. - Escorts shall provide a safety briefing including requirements, restrictions and iv. emergency egress procedures. - (c). Personnel Limits. A group granted VAB roof access shall be limited to 8 or less, exclusive of the escorts. (d). Hazardous Operations. VAB roof access for these non-operational personnel will be allowed only when there are no hazardous operations being conducted in or around the VAB area including launch countdown and landing. The VAB Site Manager or VAB Site Safety appointed designee shall coordinate with the Chief Test Conductor to ensure that no hazardous operations are occurring during the visit... #### (e). Personnel Requirements The following requirements shall be discussed with the tour participants prior to the tour as part of the safety briefing mentioned above and will be the responsibility of the tour sponsor to assure they are included in that briefing. - All visitors must comply with NASA, KSC and other applicable safety and health policy directives, guidelines and procedures. - Personnel shall be attired in long slacks, and completely closed flat-heeled shoes. ii. Porous or open-toed shoes are not allowed. - Adults only are allowed, although mature young adults that are part of the group may be allowed at the discretion of escorts and, as approved by the Director of Shuttle Processing or External Relations. - Personnel shall be physically able to exit by staircase in the event of an emergency. The VAB is equivalent to a 52-storied building. Elevators shall not be used during emergency evacuation or drill.. - ٧. No sharp objects, backpacks, coolers, cell phones or talk-back pagers are allowed. - Loose items at risk of falling shall be removed and stored or tethered or otherwise νi. secured. - Due to the brightness and reflection on the VAB roof, UV protective sunglasses are vii. recommended. - (f). Access limitations - i. VAB roof access shall be limited to the large flat area within the railings. - VAB roof access shall be allowed only during times when the weather is acceptable (e.g. no weather advisories for high wind, rain, lightning, etc). - VAB roof access may be denied as circumstances may warrant, such as roof construction, and is at the discretion of the CTC, NASA NTD, VAB Site Manager, VAB Site Safety appointed designees or their NASA counterparts or the official escorts. - (2) **Emergency scenarios** In the event of any type of emergency, the VAB Site Manager or VAB Site Safety appointed designee shall have full authority regarding egress from the building. The emergency egress route is marked by arrows on the roof leading to the west stairwell. #### 3.2 PERSONNEL ACCESS TRAINING Personnel requiring access to operations areas shall complete required area access training or be escorted by trained personnel. The operational area training course requirement listing is available from computers having connection to the internal KSC Intranet (http://kscsafety.ksc.nasa.gov/dratepage.htm) or from hard copies available from the KSC S&MA Directorate Integration Division. The Protective Services Office shall not issue permanent access badges until certification of training has been completed. Supervisors shall ensure that employees are familiar with designated facilities where they work or routinely visit. KSC Form 13-195, "PM50, KSC Training and Certification Records System Attendance Roster," shall be completed by both trainer and trainee and then forwarded to the appropriate authorized training organization for input to the "PM50, KSC Training and Certification Record System." #### 3.3 REFRESHER TRAINING Employees working on an assigned basis in and around the areas for which access has been granted shall not be required to attend formalized classroom or videotaped area access safety training for maintaining currency. The supervisor shall ensure that emergency procedures are covered during periodic safety meetings. Employees not working on an assigned basis in and around the areas for which access has been granted shall comply with the 3-year refresher training requirements. However, Emergency Life Support Apparatus (ELSA) training is required each year. Supervisors shall update the employee record by completing and signing the KSC Form 13-195. "PM50, KSC Training and Certification Record System Attendance Roster". The appropriate course number and date shall be recorded on the roster and forwarded to the appropriate authorized training organization for input to the PM50. #### 3.4 **MAXIMUM WORK TIME** #### General a. The KSC Maximum Work Time (MWT) requirements are in place to ensure that people do not work excessive hours. Work for prolonged hours or for extended periods without adequate time off can contribute to fatigue, which can lead to an unsafe act or condition. Long work hours can negatively impact a person's life away from work, as well as compromise safety and mission success at KSC. Therefore it is necessary to mitigate the risks associated with excessive work by imposing work hour limits. Civil Service and Contractor supervisors are responsible for ensuring employee knowledge and enforcement of KSC MWT requirements. Supervisors are also encouraged to ensure that workers are educated on the causes and effects of fatigue. All on-duty periods for employees shall be recorded and counted towards their total work time hours. For situations involving unpaid duty time (e.g., NASA travel to required duty stations), supervisors are responsible for ensuring persons in critical positions receive adequate rest periods prior to performing critical tasks. NASA supervisors shall ensure that all work performed by individuals in their organizations beyond normal duty hours, is processed in accordance with KSC KNPR (KHB) 9620.4, "KSC Approval and Control of Overtime, Compensatory Time and Holiday Work Procedural Requirement." Contractor organizations shall abide by the applicable documents addressing such compensation issues for them. #### b. Applicability The KSC MWT limits apply to persons in critical and noncritical positions as described in Table 3-1. Visiting employees (i.e., NASA and contractor) from other NASA Centers shall adhere to their Center's MWT policies and requirements. Host KSC organizations shall familiarize other visitors (e.g., Launch Service Providers, Payload Customers, International Partners, Academia) with the KSC MWT requirements herein to the maximum extent possible. Visitors shall not work in excess of 16 consecutive hours. No MWT records are required for visitors. | To Whom MWT Applies | 1) When MWT Applies 2) Which MWT Provisions Apply 3) Approval Reporting and Recording Requirements for Deviations and Violations | Where
MWT
Applies | |----------------------------------|--|-------------------------| | KSC Civil Service Employees and | 1) Always | Any duty | | KSC Contractors Working in | 2) All MWT provisions | station | | Positions Designated as Critical | 3) Yes (per this document) | | | KSC Civil Service Employees and | 1) Always | Any duty | | KSC Contractors Working in | 2) All MWT provisions (see Section 3.4d) | station | | Noncritical Positions | 3) No | | # TABLE 3-1 MAXIMUM WORK TIME (MWT) APPLICABILITY TABLE #### Critical Position Definition C. A critical position is one in which the worker's job performance can directly impact ground safety, flight safety or mission success. In the types of positions delineated herein, there is not more than one level of check and balance regarding the employee's decisions or actions. This includes but is not limited to: - (1) Workers dealing directly with flight hardware, software, or ground support equipment, or - (2) Employees having authority to make decisions on flight hardware or software processing, or - Workers involved in launch or landing activities, or (3) - (4) Personnel who work in ground systems that have a functional or physical interface with flight systems, or - (5) Employees working hazardous sequences of hazardous procedures. (NOTE: The phrase "not more than 1 level of check and balance" is clarified as follows for the types of positions delineated above. A technician performing and directly checking a task alone is considered to be a "0 level of check and balance". Examples of "1 level of check and balance" includes, but is not limited to: Technicians performing tasks that are directly checked by a quality control specialist; technicians performing tasks that are directly checked by an engineer; technicians performing tasks that are directly checked by a supervisor; and engineers performing tasks that are directly checked by a supervisor. [For these instances, both the individual performing the task and the individual directly checking the task are incumbents of a critical position.]) Examples of positions that can be designated as critical include, but are not limited to: NASA Test Directors, Systems Engineers, and Quality Assurance personnel. KSC Civil Service and KSC Contractor employees whose duties require that they be in a critical position only occasionally are considered to be in a critical position for the entire fiscal year. #### Maximum Work Time Provisions d. Supervisors are responsible for monitoring and maintaining accurate records of employees work hours, and forecasting their work schedules to assure MWT requirements conformance. Employees shall not work in
excess of: - (1) 12 consecutive hours (16-hours in an emergency situation), - (2) 60 hours during a workweek (7-day period), - 7 consecutive days without at least 1 full day off, (3) - 240 hours during a 4-week period, or (4) - (5) 2500 hours during a rolling 12-month period. #### Exceeding MWT Limits for Persons in Critical Positions e. It is the responsibility of the program/project or organizational Director to ensure that persons in critical positions adhere to the MWT provisions herein. It is recognized that there are situations when the MWT limits must be exceeded. However, when possible, these situations shall be preapproved in the form of a deviation. For persons in critical positions, the program/project or organizational directorate will document MWT deviations, including the date, rationale, required approvals, and mode (verbal or written) of approval. Verbal and electronic approvals are permitted if a written one is not possible. All such approvals shall be documented within 24-hours of the event or by close of business the next regular work day. Deviations shall be maintained by the approving organization, and shall be available for review. Program/project or directorate organizations shall report deviations from these MWT requirements to their organizational Director on an ongoing basis. Events that result in the maximum work time requirements being exceeded without preapproval are classified as MWT violations. Program/project or directorate organizations shall immediately report MWT violations by persons in critical positions to their organizational Director. MWT requirements for persons in critical positions are: (1) Persons in critical positions shall not work in excess of 12 consecutive hours, except when no other alternatives are available, and only with an approved deviation from the employee's immediate supervisor or higher. The deviation authorizes the employee to work up to an additional 4-hours, for a total of 16 consecutive hours. Only during a Centerwide Declared Emergency (CDE) or Program Declared Emergency (PDE) [PDE and CDE are described in Section 3.4f] can 16-hours be exceeded. Under those circumstances, the immediate supervisor and organizational Director or designee must approve the deviation for additional hours before the employee is to work them. - (2) Under no circumstances shall employees be required to work so that they do not have a minimum of 8-hours off duty between shifts. - (3) Persons in critical positions shall not work in excess of 60 hours during a workweek (7-day period). Preapproval from the immediate supervisor (or higher) shall be required for deviating from this limit. For example, if an employee has an approved deviation to work more than 60 hours, the deviation is good only for the day on which 60 hours within a 7-day period is exceeded. Another deviation will be required for each additional day that the employee needs to work during the 7-day period. - (4) Persons in critical positions shall not work in excess of 7 consecutive days without at least 1 full day off. Preapproval shall be required to deviate from this limit. Program/project or organizational directorate (NASA Division Chief; Contractor Director direct report level [or higher]) approval of an additional deviation is required to extend the employee to work up to a total of 14 consecutive days. This requires that the requesting program/project or organizational directorate specify the additional day(s) requested (not to exceed seven additional days), as well as provide justification detailing how the additional days requested matches the work profile of the operational/processing scenario. At the end of the extension period (i.e., for 8 through 13 consecutive days worked), the employee must be given a minimum of 1 full day off. It is recognized that certain, limited operational/processing scenarios prohibit full compliance with the 14 consecutive day limit. In these situations, the contractor program/project or organizational Director (with government counterpart Director [or designee] signature) may preapprove an additional deviation to extend the employee to work up to a total of 18 consecutive days. For NASA civil servants, the preapproval of an additional deviation to extend the employee to work up to a total of 18 consecutive days requires approval of the program/project or organizational Director (or designee) and the Director of S&MA (SA). This requires that the requesting program/project or organizational directorate specify the additional day(s) requested (not to exceed four additional days), as well as provide justification detailing how the additional days requested matches the work profile of the operational/processing scenario. At the end of the extension period (i.e., for 14 through 18 consecutive days worked), the employee must be given a minimum of 2 full days off. Employees shall not work more than 18 consecutive days unless a PDE or CDE [PDE and CDE are described in Section 3.4f] is in effect. Specific operational/processing scenarios (i.e., Shuttle TAL Support, Shuttle CONUS Predeployment Landing Support, Shuttle/SCA Ferry Operations, SRB Retrieval Operations, External Tank Transport Barge Operations) are exempted from the consecutive day deviation requirements, since the work profile is such that exceeding the limits is a reasonably expected condition, and the nature of the work is such that the limits can be exceeded without causing excessive employee fatigue." - (5) Persons in critical positions shall not work in excess of 240 hours during any 4 consecutive work weeks (e.g., Sunday through Saturday). A deviation from this limit requires preapproval from the immediate supervisor (or higher). (6) Persons in critical positions shall not exceed 2,500 hours during a rolling 12-month period. Approval from the immediate supervisor, program/project or organizational Director or designee, and the Director of S&MA (SA) or a designee shall be required for deviations from this limit. ### f. Planning For Deviation Surges Among Critical Positions A process called a Program Declared Emergency (PDE) provides program/project or organizational Directors a planning tool to account for a large number of deviations in advance of an event or circumstance. A PDE may be issued by a program/project or organizational Director or a designee during a phase of their planning when they determine that the task ahead exceeds their available resources for addressing the task within the MWT requirements. The normal MWT approval and recording process is required for deviations during such a period. After declaring the PDE, the program/project or organizational Director must provide the rationale to the Director of S&MA (SA). MWT limits may also be exceeded when a Centerwide Declared Emergency (CDE) is issued. A CDE goes into effect by the authority of the Center Director or designee, in the event of an emergency or a threat to the Center (e.g., natural disaster or terrorism). # g. Record Keeping for Critical Positions The approving program/project or organizational directorate shall maintain work time data. Individual program/project or directorate organizations may utilize MWT deviation/violation documentation approached (e.g., forms, logs, summary lists) as deemed appropriate for their organization. With the exception of the 2500-hour MWT limit, the fiscal year (Oct. 1 – Sept. 30) and the fiscal day, which changes at midnight, shall be used for data evaluation and maintenance of records. Approving organizations shall ensure that work time data is available for review. Program/project or organizational Directors are responsible for assuring the development and maintenance of a list that identifies and documents critical jobs and individuals assigned to critical positions. Updates must be accomplished when changes occur. A copy of this listing shall be provided to the S&MA Integration Division at the beginning of each fiscal year (no later than Oct. 15th). Program/project or organizational Directors are responsible for assuring records preparation, retention and periodic review of the monthly MWT deviations. Records are to be retained for a minimum 3-year period. Program/project or organizational Directors are responsible for preventing deviations from becoming the norm, and shall analyze MWT data for trends to prevent system abuse. Organizations shall implement corrective actions, which may result in actions such as schedule changes, staffing adjustments and employee counseling. Program/project or directorate organizations Directors shall submit a monthly maximum work time report no later than the 15th day of the following month, to the S&MA Integration Division. In addition to the preceding requirement, KSC Contractors shall also send work time data to their corresponding NASA contract oversight organization by the 15th day of the following month. The reports from NASA and contractors shall include all work time deviations in each of the categories (e.g., 12-hours worked in one day), the number of maximum work time violations that have occurred in each category, and action(s) being taken to minimize the number of deviations. In the event that an employee has multiple deviations at the same time (e.g., in order for employee to perform the required work, he must exceed 12-hours for one day and that will result in more than 60-hours work in a 7-day period), then the employee requires two separate deviations to perform the work, and each deviation must be documented in the report. # **CHAPTER 4: CONTROL AREAS** #### 4.0 **GENERAL** - A control area shall be established by the program/project or directorate organization for a. each hazardous operation. - b. Manloading shall be determined and implemented for each hazardous control area. - Impact limit lines shall be as established by the 45th Space Wing at Cape Canaveral Air C. Force Station (CCAFS). - d. Tours of facilities or buildings are prohibited during
hazardous operations. - e. Control areas for radiation hazards are addressed in KHB 1860.1, "KSC Ionizing Radiation Protection Program," KHB 1860.2, "KSC Nonionizing Radiation Protection Program," and as specified in the user organization's Radiation Use Authorization. - f. There shall be a control area of 100-feet radius from the centerline for all Orbiter moves and Mobile Launch Platform moves, stacked or partially stacked.. #### 4.1 **FACILITY CONTROLS** - Controls shall be established for use of, and entry into, controlled access facilities by a. equipment utilizing internal combustion engines. - b. Access to building roofs, elevated structures, and motor vehicle roofs shall be limited to personnel performing authorized work or as designated for the performance of launch and landing requirements. Where building rooftops or elevated structures are designated for personnel traffic, controls and safeguards shall be established for personnel protection. #### 4.2 **CONTROL AREA ANALYSIS** A safety engineering assessment shall be performed by the program/project or directorate organization to establish a control area for a new operation or to change an existing control area. The assessment shall identify the reason for the change, the impact if the proposed change is not approved, and address, as a minimum, the areas listed below. The format of the assessment is at the discretion of the user organization, provided all areas are adequately addressed. The assessment shall be disseminated to the appropriate organizations, including affected contractors. Operation Description a. Describe the task to be performed. b. **Operation Location** State the location of the operation. Describe how the immediate environment and atmospheric conditions affect the operation. Also state the possible impacts on the location and surrounding environment in the event of an accident during the operation. #### C. **Hazard Potential** Identify all credible hazards associated with this operation, including the worst case scenario. #### d. Proximity of People Describe how the operation, or an accident during the operation, will affect personnel who were not involved in the operation and were outside of the control area. #### Proximity of Other Hardware e. Describe how the operation, or an accident during the operation, will affect hardware that was not involved in the operation. #### f. System Design Describe elements of the system design that could have an impact on the safety or accident potential of the operation. #### 4.3 **MANLOADING LIMITATIONS** Hazardous manloading controls for KSC locations shall reduce the exposure to the minimum number of people, the smallest quantity of hazard, and the minimum period of time. A safety engineering assessment shall be performed by the program/project or directorate organization to establish new manloading requirements or to change existing manloading requirements. The assessment shall identify the reason for the change, the impact if the proposed change is not approved, and address, as a minimum, the areas listed below. The format of the assessment is at the discretion of the user organization, provided all areas are adequately addressed. The assessment shall be disseminated to the appropriate organizations, including affected contractors. #### Working Environment/Air Quality a. Adequate air quality exists to support the proposed manloading level based on area volume, delivered flow rate, and air exchange rates. #### b. **Ergonomics** Adequate workspace is available to safely perform work at the proposed manloading level. #### Area/Compartment Structural Capabilities C. Structural capabilities of the area/compartment are adequate to support the proposed manloading level. d. Rescue Capabilities Adequate rescue capability of the area/compartment for the proposed manloading level. e. Means of Egress/Egress Capabilities Adequate means of egress of the area/compartment for the proposed manloading level. Any changes shall include an additional safety engineering assessment as part of the rationale. # **CHAPTER 5: OPERATIONAL SAFETY** #### 5.0 SAFETY MONITORING OF HAZARDOUS OPERATIONS The program/project or directorate organization shall perform a safety engineering assessment for all hazardous operations to ensure compliance with established safety and health requirements and standards. The assessment shall identify, as a minimum, the areas listed below. The format of the assessment is at the discretion of the user organization, provided all areas are adequately addressed. The assessment shall be disseminated to the appropriate organizations, including affected contractors. - The appropriate control. a. - b. The acceptable level of safety coverage (full-time, part-time, or optional) during the operation based on the likelihood that, in the event of an emergency, the effect will: - (1) Extend outside the specified control area. - (2) Cause personnel injury/exposure. - (3) Result in major equipment/facility damage. #### 5.1 **TOOLS** All tools and equipment shall be tethered when in processing facilities above and around flight hardware or when in working environments where there is the potential for personnel injury or equipment damage. Tools used in flight hardware processing facilities shall be traceable to their storage location. #### 5.2 PRETASK AND PRETEST BRIEFINGS Pretask and pretest briefings shall be performed as follows: - **Pretask Briefings** a. - (1) A pretask briefing shall be performed prior to all hazardous sequences within a TOP when two or more personnel are involved. - (2) If shift change occurs prior to the completion of the hazardous sequence, then the appropriate briefings shall be repeated for the relieving employees. - The following items shall be addressed in pretask briefings: specific hazards to which personnel will be exposed; safety protective equipment; emergency alarms; evacuation routes; emergency instructions; Emergency Procedures Documents (EPDs); and the specific revision of TOPs to be used. - b. **Pretest Briefings** A pretest briefing is required for integrated TOPs that require a major control area. The pretest briefing shall be held within 72 hours (96 hours in the event of a Centerwide 3-day weekend) prior to the start of the operational or control sequences of a TOP. #### 5.3 SAFETY INSPECTIONS AND WALKDOWNS The program/project or directorate organization shall perform safety inspections and walkdowns and correct discrepancies for their assigned work area(s). All discrepancies, which have been documented in accordance with Attachment B, shall be corrected prior to the start of the affected steps. Required inspections and walkdowns shall be conducted as follows: #### a. Readiness Inspections A readiness inspection shall be accomplished and documented for areas/facilities/systems that have undergone construction or modification work which changes configuration or hazards involved in the process. b. Preoperational Inspections A preoperational inspection shall be accomplished and documented within 24 hours prior to the start of all operations having a major control area. Operations Inspections C. An operations inspection shall be accomplished and documented immediately prior to the start of any hazardous operation. #### 5.4 **HEAT-PRODUCING DEVICES** - a. Nonflame, Heat-Producing Devices - (1) Nonflame/heat producing devices used within 10 feet of flammable, combustible or explosive materials shall require the applicable organization to obtain a Welding and Burning Permit (KSC Form 2-13), or shall utilize a controlling TOP that contains documented engineering risk assessment controls approved by a safety professional. - (2) When heat-producing devices are used in areas protected by a Halon extinguisher system, the system shall be placed in the manual mode prior to start of the operation. - b. Arc/Flame-Producing Devices A Welding and Burning Permit (KSC Form 2-13) shall be obtained from the applicable office if a flame-producing device is required to be used within: - (1) Areas containing hazardous materials. - (2) The perimeter of hazardous processing facilities. - (3) A control area. c. Spark-Producing Devices and Smoking Spark-producing devices and smoking shall be prohibited within the following areas: - (1) Orbiter Processing Facility (OPF) perimeter fenced area; - (2) 100 feet of propellant storage containers; - (3) 25 feet of propellant transfer lines; - (4) 25 feet of explosives; - (5) 50 feet of Crawler Transporter (CT) operations; - (6) 100 feet of CT operations with stacked or partially stacked segments; ### 5.5 USE OF PHOTOGRAPHIC EQUIPMENT - a. A safety engineering assessment shall be performed by the program/project or directorate organization prior to the use of all photographic equipment used within 10 feet of open grain, explosive materials, Category A Electro-Explosive Devices (EEDs) [Faraday cap removed/firing circuit exposed], open containers of flammable/combustible fluids, or when used in confined spaces where a hazardous atmosphere may be present. The assessment shall evaluate the potential for the equipment to produce an arc or spark and the ability for components to remain securely installed within or on the camera or in remotely located equipment. The format of the assessment is at the discretion of the user organization, provided all areas are adequately addressed. - b. In addition, the following requirements shall be in effect: - (1) The camera and all attached parts shall be tethered to the photographer. - (2) All camera parts shall be self-contained and unable to fall into flight hardware. - (3) Single-use, heat-producing flashbulbs, flashcubes, or sunguns shall not be permitted. - (4) In hazardous atmospheres, remote-operated, hazardproofed photographic equipment shall be utilized. - (5) Lighting for remote cameras shall be either Underwriters Laboratories, Inc. (UL), Factory Mutual (FM), or Bureau of Mines approved, or shall be
hazardproofed, specified for the hazard, and enclosed or shielded. - b. Cameras and electronic flash assemblies to be used inside a Solid Rocket Motor (SRM) bore shall be specified for that particular use and shall include the above requirements. ### 5.6 USE OF ELECTRONIC EQUIPMENT - a. All Radio Frequency (RF) transmitting devices shall be assessed and approved by the controlling safety organization prior to use in "controlled access areas". - b. The use of headphones or earphones with personal, portable electronic devices shall be prohibited in controlled access areas where hazardous operations are conducted. - c. Electronic equipment shall meet the National Electric Code (NEC) for hazardous locations when used in controlled access areas during hazardous operations where combustible dusts, flammable vapors, or flammable liquids have the potential of release. - d. Cellular phones, answer back pagers, portable computers and transceivers (e.g., radios) shall not be used within 25-feet of operations involving explosives or pyrotechnics. # 5.7 <u>ATMOSPHERIC MONITORING SYSTEMS</u> - a. Oxygen Deficiency Monitoring System (ODMS) - (1) If an ODMS indicates a low oxygen condition, the applicable room, area, or compartment shall be cleared and controlled. If an ODMS malfunctions, the affected area shall be cleared. Work may resume in the affected area provided a portable oxygen detector is used and confirms an acceptable oxygen level. - (2) If the inert gas lines of the Mobile Launch Platform (MLP) are to remain pressurized during transfer, the ODMS shall remain operational in the local mode. - b. Portable Oxygen Analyzers - (1) Prior to the installation of a portable oxygen analyzer, the following shall be determined: - (a) The unit is operational and the battery is charged per manufacturer's specifications. - (b) The audible alarm can be heard above the noise in all areas of the compartment in which it is to be used or shall be placed in such a location that all occupants will hear it. - (2) The unit shall be checked once per 8-hour shift and a log shall be maintained documenting the time, location, and the name of the person performing the check. - (3) The unit(s) shall be checked and a normal oxygen (O₂) atmosphere shall be verified at the beginning of each shift prior to any work in the controlled area when the area has been left unoccupied on the prior shift. - c. Hazardous Gas Detection System (HGDS) - (1) At least one HGDS shall be operational prior to any remote Hydrogen (H₂) operation. A HGDS monitor shall keep the team advised of H₂ readings. - (2) Lower Explosive Limit (LEL) detectors shall be utilized for all local H₂ operations. If H₂ readings exceed 10,000 parts per million (ppm) the Task Team Leader (TTL) shall (3) evaluate the magnitude of the leak and determine the actions to take to protect personnel and equipment. (4) Loss of HGDS during Power Reactant Supply and Distribution (PRSD) tank pressurization, and before stabilization, shall require depressurization immediately. Loss of HGDS after tank stabilization shall not require depressurization if no leaks are present. #### 5.8 **CRYOGENICS** - The Orbiter Maneuvering Subsystem/Forward Reaction Control System (OMS/FRCS), a. wings/mid-body/payload bay, and aft compartments shall be inerted to less than 1 percent O₂ prior to PRSD tank servicing and External Tank (ET) loading. - Cryogenic fluid systems shall be depressurized and made safe before attempting any type of maintenance. - During handling of cryogenics, emergency showers shall be available for immediate use. However, water under high pressure of water that feels warm to the touch should not be used for cryogenic exposure first aid. - The oxygen content in Liquid Hydrogen (LH₂) transfer lines shall be verified less than 1 d. percent (inert) prior to start of LH₂ flow. #### 5.9 HAZARDOUS OPERATIONS SUPPORT REQUIREMENTS - a. Communications and Television Support - All hazardous operations shall require primary and backup communications between the (1) operation's control point and the operation. - (2) Recorded voice communication and Operational Television (OTV) coverage shall be required during the performance of all hazardous operations having a major control area. - Safety Radio Net b. - (1) Emergency forces supporting hazardous operations shall be required to maintain continuous monitoring on Safety Net 105 or Net 205. Verification of operational status shall be accomplished a minimum of once per day. - The Safety Net shall be used during transit and when Self-Contained Atmospheric Protective Ensemble (SCAPE) personnel are off Operational Intercommunications System (OIS). - (3) Telephones or other means of radio communications shall be available for summoning assistance in emergencies in areas where hazardous operations are conducted. b. Loss of support and equipment during any phase of the operation shall be reported immediately to the appropriate program/project organization for assessment of necessary actions. # 5.10 HANDLING OF FLAMMABLE/COMBUSTIBLE LIQUIDS NEAR FLIGHT HARDWARE - a. Containers used for liquids, flammable/combustible or not, shall be labeled to specify the contents. - b. All flammable/combustible liquids brought into, or within 3 feet of, the Orbiter, ET, Solid Rocket Booster (SRB) or International Space Station (ISS)/payload hardware shall be in nonshatterable containers equipped with leak-proof closures that can be positively secured in the closed position. The container material shall be compatible with the contents. - c. Individual containers of flammable liquids exceeding 1 pint and allowed within 50 feet of flight hardware shall meet the following requirements: - (1) A risk assessment for operational use shall be performed by the program/project or directorate organization. - (2) The process for use shall be controlled by a hazardous TOP per KNPR 8715.3, Attachment B, Section 10.k. - d. Plastic squeeze bottles that produce a mist shall not be used to dispense flammable liquids with a flash point below 100 degrees Fahrenheit (°F). # 5.11 SAFETY WARNINGS Flashing safety warning lights, warning signs, and public address systems shall be installed at the control point, in appropriate work areas or facilities where hazardous operations exist as a part of routine work. a. Warning Lights Warning light designations at KSC shall be: - (1) Flashing red. A danger period exists and personnel shall be cleared from the control area immediately. - (2) Flashing amber. A hazard period exists and entry to the control area shall be limited to essential personnel. - b. Warning Signs Warning signs will be used in conjunction with and adjacent to warning lights as follows: (1) Warning signs adjacent to red lights shall read as follows: ### **EMERGENCY SITUATION EXISTS** ### **CLEAR AREA IMMEDIATELY** (2) Warning signs adjacent to amber lights shall read as follows: # **ENTRY ON CONTROLLED BASIS** HAZARDOUS MATERIALS/OPERATIONS PRESENT **ESSENTIAL PERSONNEL ONLY** Paging and Area Warning System (PAWS) C. An announcement, preceded by a high-pitched warbling sound (where available), shall be made when an emergency condition necessitates clearing the area immediately of all personnel. #### 5.12 **ELEVATORS** - All maintenance of elevators and any work performed in the elevator shaft shall require the affected elevator to be locked out. - b. Protective screens must be installed between the elevator shaft being worked on and adjacent operational elevator shafts at all levels where work shall be performed. - Adjacent elevators shall be locked out during protective screen installation and removal. C. #### 5.13 HAZARDOUS OPERATIONS EMERGENCY POWER Adequate emergency power shall be required for all hazardous operations that utilize electrical power for safing or securing. #### 5.14 **CONCURRENT OPERATIONS** Concurrent hazardous operations involving major control areas within the same facility shall require: - a. Utilization of a TOP, providing a single control point, for one or more similar operations. - For concurrent hazardous operations involving significant loss potential or high energy, b. the following shall be met: - (1) The operations can be safely and quickly terminated. - (2) Personnel performing the operations are provided a route of rapid exit in the event of an emergency. - Emergency vehicles have ready access to an emergency without proceeding through another operational cleared/controlled area. # **CHAPTER 6: UNIQUE HAZARDOUS FACILITIES REQUIREMENTS** # 6.0 **GENERAL** The Vehicle Assembly Building (VAB) and Rotation, Processing and Surge Facility (RPSF) are designated as explosives handling facilities. Explosives operations shall limit the exposure to a minimum number of persons, for a minimum time, to the minimum amount of explosive material consistent with safe and efficient operations. # 6.1 VEHICLE ASSEMBLY BUILDING - a. Dual Operations - (1) Additional crane operations involving the other 175/250/325 ton cranes shall not be permitted during Orbiter breakover or when lifting an Orbiter, SRM segment, or SRB forward assembly to/from the transfer aisle and high bay. External tank entry, fire protection outages, and Operations and Maintenance (O&M) activities requiring personnel above the ET checkout cells or on the VAB roof shall not be scheduled during the above crane operations. - (2) Major hardware moves and other operations requiring opening the VAB doors shall be evaluated for impact on other operations within the building. Refer to paragraph 6.1d. - (3) VAB crane operations involving nonhazardous/noncritical equipment and O&M activities shall be permitted outside the control area during ET lifts or when supporting the Orbiter or SRM if the crane is static and the Orbiter or SRM is within 5 feet of the transfer aisle floor. - b. Housing Personnel housing shall be in accordance with the VAB Housing Abatement Plan, KSC-DF-3669. c. High Bay Roof Access Stair tower egress
doors shall be configured to permit access from the interior to the roof. Only west side perimeter roof doors shall remain unlocked. East side perimeter doors shall require a key to access off the roof. d. Aft Booster and Segment Lift Aft booster and segment lifts shall be permitted from the transfer aisle to within 3 feet of the holddown posts and clevis, respectively, between the hours of 4:30 p.m. to 6:30 a.m., Monday through Friday. Exceptions must have the concurrence of the KSC Launch Director, KSC S&MA Shuttle Division Chief and the SFOC Safety, Quality, and Mission Assurance (SQ&MA) Director. e. Door Configuration The VAB doors shall be configured based on operational needs, personnel safety and egress, effects of high winds, lightning, solar radiation, large sail areas, multiple operations, and RF controls. VAB door configurations shall be based on KSC-DF-502, SRM/VAB Inadvertent Ignition Effects Study, dated September 1981. # 6.2 ROTATION, PROCESSING, AND SURGE FACILITY - a. Dual Operations - (1) Concurrent Operations The following shall not be done concurrently in the Rotation Building: - (a) Grain inspection (when man is in bore). - (b) Segment lift or rotation to vertical. (Not applicable if crane is secured and segments suspended within 5 feet of floor.) - (c) The following operations shall not be performed with (a) or (b) above. Unless the following operations violate another operation's control area or require unrelated work above open grain, no restrictions shall be imposed on performing the following operations concurrently with each other. - 1. NASA Standard Initiator (NSI) resistance measurements. - 2. Insta-Foam operations when personnel are on breathing air or inside enclosure. - 3. Nozzle preparation and mating operations require personnel inside the environmental enclosures. This also includes personnel inside the nozzle after mate. - 4. Air Load Debond Test. - (2) Personnel shall not be allowed above the build-up stands' upper levels, including roof during (1)(a) or (1)(b) above - b. Housing - (1) The RPSF manloading level shall not exceed 80 personnel. - (2) Personnel housing shall be limited to the Support Building. - (3) Additional buildings, trailers, or workshops shall not be permitted within the facility perimeter fence. - c. Special Requirements - (1) Exterior doors in the Rotation Building shall be closed whenever a Faraday cap/shorting plug on an NSI or electrical cable attached to an NSI is removed. - (2) Locomotives shall not enter the Rotation Building. The locomotive shall use a spacer car when moving railcars in or out of the building at all times. - (3) The SRM Shuttle Wagon/SRM Transporter may enter the Rotation Building without an Internal Combustion permit to move railcars or segments, providing there is no open grain. The SRM Shuttle Wagon shall require a spacer car only when open grain exists in the building. - (4) Work within the Surge Buildings shall be limited to periodic segment inspection and Ammonium Perchlorate (AP) cleanup when performed on each segment sequentially. - (5) No more than three segments shall have open grain at any one time in the Rotation Building. Only one segment may be exposed at a time in the Surge Buildings. - (6) Segments shall not be left unattended when open grain conditions exist. - (7) No more than six segments shall be in the Rotation Building at a time (for a total of 22 segments located inside facility perimeter fence). # 6.3 OPERATIONS AND CHECKOUT (O&C) BUILDING No payloads containing liquid fuels or solid propellant shall be permitted inside the O&C Building. # **CHAPTER 7: MATERIALS PROCESSING** # 7.0 **GENERAL** Materials to be used in KSC facilities in support of programs (e.g., Space Shuttle, International Space Station, Launch Support Program), as well as KSC institutional activities (e.g., Research and Development [R&D] projects, propellant farms, laboratories, testbeds) shall be selected, tested, assessed, and approved per the requirements of Kennedy NASA Procedural Requirements (KNPR) 8072.1, KSC Materials and Processes (M&P) Control Procedural Requirements. KNPR 8072.1, which establishes the minimum requirements for M&P selection and control in the design, fabrication, and processing/operation of aerospace GSE and flight hardware in associated KSC facilities, implements the applicable requirements of Agency M&P documentation (i.e., NASA-STD-6001). NASA/KSC program and institutional organizations shall ensure associated contractor processes and procedures are implemented for safe materials selection, approval, and usage. Section 2: S: SPECIAL REQUIREMENTS ### ATTACHMENT A # KSC SUPPLEMENT TO OSHA 29 CODE OF FEDERAL REGULATIONS (CFR), PARTS 1910/1926 ### 1.0 PERSONAL PROTECTIVE REQUIREMENTS - a. Splash (KSC vapor suit): The suit shall not be used for protection against hypergolic propellants. - b. Emergency Life Support Apparatus (ELSA)/Breathing Escape Unit (BEU): All breathing escape unit containers shall be "safety green" and white striped with 4-inch black lettering, on a white background with a "safety green" border, stating "Breathing Escape Units." The green and white stripes shall be 2 inches in width. - c. Contact lenses: Personnel attired in Self-Contained Atmospheric Protective Ensemble (SCAPE), toxic vapor suits, or full-face respirators shall not wear contact lenses. - d. Eyeglasses worn in SCAPE, toxic vapor suits, or full-face respirators, shall be secured. - e. Minimum requirements for garments used at KSC during hazardous operations in noncleanroom environments: ## 1.1 FALL PROTECTION/WORK ON ELEVATED STRUCTURES A double action or safety snap lanyard and a full body harness (ANSI Class III) shall be required for all identified fall hazards. # 1.2 MACHINE SHOP SAFETY - a. An eyewash basin shall be located within 6 feet of degreasing tanks. - b. Gloves, identification badges, rings, and other jewelry shall not be worn when operating rotating machinery. Long hair shall be kept in place. ### 1.3 SCAPE REQUIREMENTS - a. When using Cat. I SCAPE, personnel shall observe a 60-minute rest period between consecutive SCAPE operations. Time in Cat. IV suits shall not exceed 4 consecutive hours. The use of Cat. VI suits is limited only to those operations requiring entry into a confined/limited access space not achievable by a Propellant Handlers Ensemble (PHE). - b. Showering of SCAPE Personnel and Equipment. - (1) All personnel shall shower immediately when exposed to Nitrogen Tetroxide (N_2O_4) liquid, and within 10 to 15 minutes when exposed to N_2O_4 vapors. Personnel may return to the workstation after showering. - (2) All personnel directly involved in a fuel task shall shower thoroughly before proceeding from a fuel task to an oxidizer task or vice versa if toxic vapor parameters are exceeded. In case of actual or suspected hypergolic liquid contamination of the suit, personnel shall shower as required and shall change suits prior to switching tasks. - (3) All personnel wearing a Cat. VI suit exposed to hypergolic liquid fuel or oxidizer or vapors heavy enough to envelop the suit shall shower for 5 minutes within 5 minutes of exposure. - (4) Prior to leaving the work area for normal SCAPE operations, SCAPE personnel with: - (a) No or low hypergolic vapor residual exposure, shall shower for a minimum of 1 minute. - (b) Heavy hypergolic vapor or hypergolic liquid contamination, shall shower with all exposed tools and equipment a minimum of 5 minutes. - (5) Tools and equipment exposed as below shall be cleaned separately. - (a) Items exposed to hypergolic vapors only, shall be thoroughly washed by field flushing or water immersion and released for normal use. - (b) Items exposed to hypergolic liquids shall be field flushed, double bagged, and identified as "Hypergolic Contaminated." - c. Elevator Support for SCAPE Operations at Launch Complex (LC) 39 A/B - (1) For operations below the Rotating Service Structure (RSS) 120-foot level and Fixed Service Structure (FSS) 115-foot level, a minimum of two of the three elevators shall be accessible based on Pad configuration, and operational prior to starting SCAPE operations. - (2) For operations at the RSS 120-foot level and above the FSS 95-foot level, both FSS elevators shall be operational prior to starting SCAPE operations. Once SCAPE operations have begun, at least one elevator shall remain operational throughout the operation. - (2) For operations in the Payload Changeout Room (PCR), the PCR elevator shall be operational prior to start of SCAPE operations. - d. SCAPE Support - (1) During periods of non-SCAPE operations, contingency SCAPE support shall be provided within 4 hours of notification. - (2) During all SCAPE operations, adequate personnel shall be immediately available, onsite, to safe the system in the event of an emergency. | Protective Clothing and Ensembles | | | | | Approved for use with: | | | | Hypergolic Ops | | | |-----------------------------------|----------|------|-------------|--------------------------|-------------------------------|-----|-------------------------------|--|----------------|------------|------------| | Protective Garment Used | | | | | (A = approved for use | | | tor use) | Category | | | | Name | Category | Туре | Type
Air | Type
Gloves | N ₂ O ₄ | ММН | N ₂ H ₄ | Contaminated Scrubber Liquor/ Rinsates | Class
A | Class
B | Class
C | | SCAPE | I | PHE | Back-pack | 50 Mil/ 32
Mil | Α | Α | А | NO | А | A | NO | | SCAPE | IV | PHE | Hose-line | 50 Mil/ 32
Mil | Α | Α | Α | NO | А | Α | NO | | SCAPE | VI | CPS | Hose-line | 32 Mil | Α | Α | А | A | NO | YES | NO | | Splash/
Apron | Other | * | ** | See Note
Below | | NO | | A | NO | NO | Α | ^{* -} Selection based on level of hazard potential associated with task (clarify in TOP). | NOTE: Type Gloves Approved | | | | | | |---------------------------------|--|--|--|--|--| | Long Gauntlet gloves |
 | | | | | Pioneer rubber Pylox V20 gloves | | | | | | | North butyl gloves | | | | | | TABLE A-1 PROTECTIVE CLOTHING AND ENSEMBLES ^{** -} Full-face, Supplied Air Respirator (SAR) when inhalation hazard present. When no inhalation hazard is present, use chemical splash goggles and/or face shield. #### 2.0 **EMERGENCY EVACUATION REQUIREMENTS** - Emergency evacuations shall be announced over the public address system. The a. announcer shall define the location and nature of the emergency specifying evacuation exits, alternate routes, and fallback area/location. The announcer shall also be responsible for activating area (flashing red) warning lights and/or the evacuation/fire alarm system, as appropriate. - b. A person shall be appointed to notify all personnel in areas of high noise level or those not within hearing range of public address speakers. - C. Upon completion of an emergency evacuation in designated areas, a head count shall be conducted in the designated marshaling area and then the Test Director (TD) shall be notified of any unaccounted persons. - d. The Pad Slidewire System shall be operational at all times except during scheduled outages. - At least one ELSA shall be provided at the workstation for every person in the Orbiter e. forward and aft compartments. When a hazardous payload is installed in the Orbiter, ELSAs shall be provided for each person working in the mid-body anytime the payload bay doors are closed. ELSAs shall not be required when the payload bay doors are open, regardless of payload, or when closed with no hazardous payload, provided the ODMS is installed and operational. - Emergency evacuation exercises shall be conducted annually for all facilities conducting hazardous operations. Exercises shall be conducted for each shift where 10 or more employees commonly work. #### 3.0 LOCKOUT/TAGOUT PROGRAM - Locks used shall be keyed padlocks. a. - b. All KSC personnel shall use KSC Form 20-195 for tagout. - Locks and tags issued for use shall be traceable from the using employee back to the C. issuing employer. - d. The issuing employer shall maintain an accountability log of all issued and returned devices. #### 4.0 **DANGER TAGS** The KSC Danger Tag, KSC Form 20-165, shall be used to identify defective or nonconforming equipment that presents a threat of death or serious injury to personnel or destruction of flight hardware or equipment. b. Each organization issuing Danger Tags shall maintain accountability through the use of a log for all issued and returned tags. c. Each organization using Danger Tags shall conduct an annual audit of the Danger Tag program. ## 5.0 BATTERY HANDLING - a. Equipment used for handling and servicing lead acid and potassium-hydroxide electrolyte batteries shall be kept separated from each other and shall be properly labeled. - b. Adequate ventilation and exhaust shall be provided to prevent acid vapors from entering nickel cadmium or silver zinc battery areas. - c. Charging benches and tables shall be coated with acid/electrolyte-impervious coatings and shall be equipped with splash/drip trays to prevent drips/ leaks from running onto the floor. - d. Individual/liquid-filled battery charging/ conditioning shall be accomplished in battery shops. Battery charging equipment shall be continuously monitored by personnel when operating. Battery-operated vehicles and equipment shall be recharged only with recharging equipment designed for that purpose. ### ATTACHMENT B # KSC SUPPLEMENT TO NPG 8715.3. NASA SAFETY MANUAL #### 1.0 TECHNICAL OPERATING PROCEDURES (TOPs) - General a. - TOPs shall be utilized to provide an organized and systematic approach to identify and (1) control hazards. TOPs shall be: - Required when equipment operations, planned or unplanned, are hazardous or (a) constitute a potential launch, test, vehicle, or payload processing constraint. - (b) Required when an operation is detailed or complicated and there is reasonable doubt that it can be performed correctly without written procedures. - Reviewed for KSC and offsite areas to ensure that hazardous operations are properly (c) classified and the appropriate safety precautions have been specified. - (2) All TOPs shall be prepared in clear, precise language that can be readily understood by personnel involved in the operation. TOPs shall be formatted and processed to contain the requirements specified herein. Space Shuttle Program/International Space Station (SSP/ISS) payload organizations shall comply with the requirements of KSC Procedureal Requirements (KHB) 1700.7. Laboratory operations shall comply with 29 Code of Federal Regulations (CFR) 1910.1450 in lieu of the requirements of this Attachment. - b. TOPs shall contain: - (1) A brief description of the task, operation, or procedure. - (2) Identification of the operating location and/or departing/arriving areas. - (3) Specific hazards that personnel will be exposed to during the operation. - Identification of all conditions that cause the TOP to be classified as hazardous. (4) - (5) A step verifying that the TOP is current and complete. - (6) Operational Maintenance Requirements and Specifications Document (OMRSD). Hazard Analyses, and/or Payload Hazard Reports that specify procedural controls for specific hazardous conditions. The procedural controls shall be uniquely identified within the TOP. - Safety precautions (CAUTION/WARNING Notes), for any activities where specific quidelines must be observed or actions taken to prevent or limit hazards. The safety precautions shall immediately, or as closely as possible, precede the step that directs the activity. A note specifying completion of the hazardous activity shall immediately follow the last step. A step providing for public address announcements, or other positive means, to be made to alert personnel of the dangers and information associated with the hazardous operation. - (9)Identification of organizational elements and facilities required supporting the operation. - Identification of tools, equipment, and clothing required for the safe performance of the operation or as required by emergency procedures associated with the operation. This information shall be contained/specified within the WARNING Note immediately preceding the first step/sequences or group of steps within a sequence that is hazardous. - A list of references that are specifically called out within the TOP required supporting the operation. The list shall contain the document identifying number, revisions, and title, with the originator listed in parenthesis after the title. Where the latest issue of the document or drawing is to be used rather than a specific revision, latest issue will be entered in the revision column. - (12)Unique safety rules and requirements addressed to a specific step, groups of steps, or sequences, in the operational sequence of the TOP, that are required for the safe conduct of a hazardous operation. - (13) Identification of those job categories requiring certification for the performance of the TOP task. - A list identifying the manloading requirements. The list shall immediately precede the (14)first step/sequence or group of steps within a sequence that is hazardous. The list shall identify the individuals by call sign/ functional title, number of personnel, approximate location. function, and the organization or contractor employing the individual. - A procedural step placed immediately preceding the first step/sequence of the hazardous steps, to identify/specify each control area for hazardous operations. The instructions shall include placement of signs, barriers, warning lights, and directions for all nonessential personnel to clear the specified control area, allowing sufficient time for them to do so before the start of a hazardous step/sequence. - A procedural step for those hazardous operations requiring Safety concurrence prior to starting the step/sequences (or subtask TOPs containing hazardous operations) and prior to opening the area for controlled work at the conclusion of hazardous activities. - A procedural step verifying that a preroute survey has been accomplished before transporting Ground Support Equipment (GSE) and flight hardware where length, height, or width may cause interference problems/hazards. - A procedural step verifying that a preoperational inspection for operations having a major control area, and/or an operational safety inspection for all hazardous operations has been performed. Any discrepancies that constrain or have the potential to impact the operation shall be documented, prior to the commencement of any hazardous steps. - (19)A procedural step with task leader verification that personnel participating in a hazardous operation are certified, equipped, briefed, and ready to proceed. - (20)Procedural steps verifying that pretest and pretask briefings have been held. - (21)TOPs shall have emergency instructions when operations directed in the TOP activate system/equipment capable of causing personnel injury or equipment damage if not expeditiously shutdown, safed, or secured should a malfunction occur. When a TOP is in progress, the emergency instruction in the TOP shall take precedence over the Emergency Procedures Document (EPD). Emergency instructions shall: - Contain specific contingency actions necessary to cope with emergency conditions. (a) - (b) Address hazards unique to the operation and shall provide for rapid shutdown to protect personnel and equipment. - (c) Contain all the steps required to accomplish the shutdown and shall not refer to another document. - Be located in an appendix or at the rear of the TOP using goldenrod color pages, distinctive border, or cut corners, and be available to the test team at all times. - (22)The following data when involving the pressurization of vessels within GSE or facilities: - (a) Maximum Allowable Working Pressure (MAWP). - (b) Relief valve set pressure (if installed). - Burst disc
pressure/temperature rating (if installed). (c) - (d) A WARNING, for initial (first-time) pressurization, stating the MAWP immediately before the step that calls for pressurization. (For subsequent pressurizations this may be in the form of a statement.) **NOTE**: A sketch or diagram which shows the configuration of the system to be pressurized and which includes maximum allowable working pressures, relief valve set pressures, and burst disc pressure/temperature ratings may be used to meet the requirements listed in (a), (b), and (c). - (23) Air handler configuration for hypergolic operations in the Orbiter Processing Facility (OPF). - A step verifying the safed and armed circuits are safed and the Pyro Initiator Controller (PIC) capacitors are discharged prior to the disconnection of live explosives. - Subtask Safety Controls C. Integrated/controlling TOPs shall manage the specific safety controls contained in subtask TOPs/documents. d. Job Cards Safety requirements for Job Cards shall be identical to safety requirements for Category I TOPs. #### **Operations Planning Sheets** e. Safety requirements for Operations Planning Sheets shall be contained in the applicable TOP. Contractor and, if required, Government Safety representatives shall approve Operations Planning Sheets prepared for hazardous steps of hazardous TOPs prior to implementation of the TOP. #### f. Placard Procedures - Placards shall be attached to equipment or positioned near equipment to provide assembly or operating instructions. - (2) The use of placards shall be limited to repetitive simple tasks. - Placards shall be used only for GSE and facility items. They shall not be used for electrical or mechanical equipment when interfacing with flight hardware, unless authorized by a TOP. - (4) Placards shall define any prerequisites, contacts, or preoperations that must be performed or made prior to implementation. - (5) Placards shall not be used for hazardous operations. - Installation of placards shall be authorized using a TOP initiated by the organization using the placard and an exact copy of the placard shall be attached to the authorizing TOP. - Emergency Procedure Document (EPD) g. An EPD shall be produced for work areas where hazardous operations are performed in order to provide the processing team with procedures to be followed if an emergency occurs at anytime in the facility. The EPD shall supplement the emergency instructions specified in 1.0b(21) above. See KHB 1040.1 for specific details. #### h. Hazard Classification of TOPs All TOPs shall be classified as hazardous or nonhazardous. Each operation shall be evaluated for the task and location. Categories I and II TOPs shall be classified by the originating organization as hazardous if the activity controls or involves, but not limited to operations that: - Require personnel to be present in an enclosed or dangerous area (tanks, manholes), including closed spacecraft and closed Propellant Handlers Ensemble (PHE) suits, in which the environment deviates from a normal atmosphere. - (2) Involve the handling, receipt, storage, transportation, installation, removal, checkout, or closeout of explosives including solid propellants. For any operation or checkout of an explosive system, following explosive item installation/connection and prior to power on/off simulated or direct explosive system checks or tests, the condition or status of the explosives (connected, safed, or disconnected) must be stated and verification required within the TOP. - Involve moving GSE or flight hardware where length, height, width, or weight may (3) cause interference or problems/hazards. - (4) Involve crane-hoisting operations. The procedure for crane hoisting shall be classified hazardous unless the cognizant program/project or S&MA Division determines that the size or weight of the equipment to be hoisted is such that it would not be considered a hazardous operation. - Involve forklift operations for loading, unloading, and transporting of hardware or (5) materials where assessment by the cognizant program/project or S&MA Division confirms potential hazards. - Involve the use of ionizing or nonionizing radiation sources that have hazard controls specified in the approved Radiation Use Authorization for that source as issued by the KSC Radiation Protection Program. - Involves the handling or transfer of propellants, hazardous gases, flammable materials (7) or other materials hazards that require implementation of special safety control measures such as use of respirators, special ventilation systems, and lockout/tagout procedures identified by the program/project or S&MA Division. - (8) Involve an electrical hazard that may cause injury or death. - Involve the pressurization of systems or components and include at least one of the following cases: - (a) Flight system pressure vessels controlled by fracture mechanics with: - 1. Any pressurization that exceeds any previously recorded pressurization in the pressure vessel operational time/ cycle log. - 2. Any pressurization above the MAWP. - 3. Any pressurization above 25 percent of the MAWP when the vessel contains hazardous fluids. - (b) Flight system pressure vessels not controlled by fracture mechanics with: - 1. Any pressurization above 25 percent of MAWP that exceeds any previously recorded pressurization in the pressure vessel operational time/ cycle record log. - 2. Any pressurization above MAWP. - Any pressurization above 25 percent of MAWP when the vessel contains hazardous 3. fluids. - Involve the pressurization of ground-based pressure vessels/systems and include at least one of the following cases: - (a) Any pressurization above the MAWP/Design Pressure. - (b) First time pressurization to rated pressure of any new vessel/system or the modified portion of an existing vessel/system. This excludes pressurization after removal or replacement of a component with a like item that has been pressure tested prior to installation. This also excludes pressurization of flex hoses up to rated operating pressure, provided hose restraints required by Attachment E of KNPR are in place. - In-place calibration at more than 80 percent of full scale for pressure gauges with scale (c) range over 200 pounds per square inch gauge (psig) unless the gauge has a solid front case with pressure relief back. - (11)Involve procedures that manually control pressurization of systems where MAWP/Design Pressure can be reached. The TOP shall contain a CAUTION/WARNING note stating the maximum allowable pressure. - (12)Call up hazardous sequences of subtask TOPs. The controlling TOP shall be classified as hazardous. - (13)Involve activities not previously identified in Sections 1.h.(1) through 1.h.(12) that could endanger personnel and/or damage hardware. - i. **TOP Covers** - TOPs shall be identified as either hazardous or nonhazardous on their covers. (1) - (2) EPDs shall be distinctively marked. - **TOP Changes and Revisions** j. TOP changes/revisions shall be processed as follows: - (1) A written approved deviation is required for changes/deviations to any section of a hazardous TOP, including out-of-sequence testing. - Interim changes to existing Category I and II TOPs shall be in accordance with the (2) following: - (a) Insufficient time exists to make a formal change to a previously released TOP. - (b) An approved deviation authorizing an interim change is obtained. - Each change shall be identified (select applicable term) as follows: (c) #### THIS CHANGE DOES DOES NOT AFFECT OR ADD HAZARDOUS STEPS TO THIS DOCUMENT (d) Interim changes that add to, or affect, hazardous sequences or steps, require Safety review and approval. Redline changes shall only be used to correct clerical errors or make pen and ink (e) changes. - All approved deviations or other documentation authorizing permanent changes to a TOP during its use shall be incorporated as part of the next printed change or revision. - A deviation shall not be required for preplanned sequences that can be performed out (4) of order. - All TOPs/changes/deviations involving the flight termination system shall be forwarded (5) to the Director of S&MA (SA) for coordination with the appropriate USAF organization. - TOPs/changes/deviations involving hazardous operations at Vandenberg Air Force Base (VAFB), or involving hazardous operations for NASA Launch Services Program (LSP) at the Cape Canaveral Air Force Station (CCAFS), shall be forwarded to the S&MA LSP Division. TOPs/changes/deviations involving hazardous operations for NASA payloads (KSC or CCAFS) shall be forwarded to the ISS/Payload Processing S&MA Division. #### k. Processing of TOPs All organizations operating in areas under KSC jurisdiction shall ensure all TOPs they originate are developed, classified (hazardous or nonhazardous), and processed as follows: - (1) Category I TOPs - Prior to use, ensure the appropriate Safety and Health professional(s) reviews and (a) verifies (by signature) compliance with the requirements herein. - (b) Ensure approved new Category I hazardous TOPs are approved by the appropriate Safety and Health professional(s) at least 10 days prior to scheduled use. - (c) Ensure Category I changes or revisions are approved by the appropriate Safety and Health professional(s) at least 3 days prior to scheduled use for page changes, and at least 7 days prior to scheduled use for document revisions. - (2) Category II TOPs - A Category II TOP may be used for one-time-only hazardous operations and for repetitive nonhazardous operations when work is of limited scope and does not economically justify preparation of a Category I TOP. - (b) Prior to use, ensure the appropriate Safety and Health professional(s) reviews and verifies (by signature) compliance with the requirements herein. - (c) The procedure shall be submitted to the appropriate Safety and Health professional(s) for review and approval at least 2 days before the procedure is performed,
except in the case of real-time TOPs. - I. Unique symbols shall be used on all bar charts, integration, and element schedules to differentiate between operations having a major control area, a local control area, and no control area. A legend shall be provided on each page. #### 2.0 MISHAPS AND CLOSE CALLS #### 2.1 GENERAL REQUIREMENTS All mishaps and close calls shall be reported to the responsible supervisor and the organizational (NASA or contractor) safety office and shall be investigated to determine the root cause(s), to develop and implement corrective actions in order to prevent recurrence, and to document and share lessons learned. In addition, all mishaps and close calls shall be electronically entered into the NASA Incident Reporting Information System (IRIS) database. The requirements stated herein implement NPR 8621.1, NASA Procedural Requirements for Mishap Reporting, Investigating and Recordkeeping. The KSC mishap and close call processes are documented in KDP-KSC-P-1450, KSC Launch Contingency Procedure; KDP-KSC-P-1473 Mishap Reporting and Investigation; KDP-KSC-P-1474 Mishap Investigation Board; and KDP-KSC-P-2111, Reporting Close Calls. #### 2.2 **DEFINITION OF MISHAPS AND CLOSE CALLS** #### a. Mishaps A mishap is an undesired and unexpected event that results in injury requiring more than first aid, occupational illness to personnel, and/or damage to property of at least \$1000. Mishaps also include injuries or occupational illnesses resulting from repetitive stresses or exposures over a prolonged period of time. Mishaps resulting in damage to aircraft, space hardware, or ground support equipment that meet these criteria are included, as are test failures in which the damage was unexpected or unplanned. For purposes of investigation and reporting, mishaps are categorized as follows: #### (1) Type A Mishap A Type A mishap is a mishap resulting in one or more of the following: - An occupational injury or illness resulting in a fatality, a permanent total disability, or (a) the hospitalization for inpatient care of 3 or more people within 30 workdays of the mishap; - (b) A total direct cost of mission failure and property damage of \$1 million or more; - A crewed aircraft hull loss: (c) - An occurrence of an unexpected aircraft departure from controlled flight (except high performance jet/test aircraft such as F-15, F-16, F/A-18, T-38, and T-34, when engaged in flight test activities). #### (2) Type B Mishap A mishap that caused an occupational injury or illness that resulted in a permanent partial disability, the hospitalization for inpatient care of 1-2 people within 30 workdays of the mishap, or a total direct cost of mission failure and property damage of at least \$250,000 but less than \$1,000,000. ### (3) Type C Mishap A mishap resulting in a nonfatal occupational injury or illness that caused any days away from work, restricted duty, or transfer to another job beyond the day or shift on which it occurred, or a total direct cost of mission failure and property damage of at least \$25,000 but less than \$250,000. #### (4) Type D Mishap. A mishap that caused any nonfatal OSHA recordable occupational injury and/or illness that does not meet the definition of a Type C mishap, or a total direct cost of mission failure and property damage of at least \$1,000 but less than \$25,000. Permanent occupational hearing loss in excess of 25 decibels in either ear is classified as an incident. #### (5) Close Calls. An occurrence or a condition of employee concern in which there is no injury or only minor injury requiring first aid and no significant equipment/property damage/mission failure (less than \$1000), but which possesses a potential to cause a mishap or negative mission impact. #### 2.3 Classifying Mishaps and Close Calls #### Initial assessment a. For purposes of initial assessment of mishaps and close calls, it is recognized that severity of the event. Therefore, a worst-case estimate of injury/illness and/or damage or its potential shall be made and updated as needed. #### b. Mishaps. Mishaps are classified as Type A, B, C, or D in accordance with the definitions in Section 2.2.a. All mishaps shall be entered into the NASA IRIS database. If any program/project or directorate organization requires assistance with the NASA IRIS database or its use, contact the Safety and Mission Assurance (S&MA) Institutional Safety and Quality Division for assistance. #### Close Calls. C. The definition of a close call is contained in Section 2.2.b. For close calls, an assessment of the worst case potential mishap severity and probability of occurrence shall be performed. The mere existence of a hazard does not constitute a close call. In order to meet the definition of a close call, there must be an undesired and unexpected event that has potential for causing a mishap or negative mission impact, even though neither occurred. For example, a sidewalk that is buckled and uneven is classified as a hazard by its mere existence. If someone were to trip or fall, and escape injury or only require first aid, the event is classified as a close call if the event had significant potential to have been any type of mishap. All close calls shall be entered into the NASA IRIS database. If any program/project or directorate organization requires assistance with the NASA IRIS database or its use, contact the Safety and Mission Assurance (S&MA) Institutional Safety and Quality Division for assistance. #### d. Exposure to Hazardous Substance Personnel exposure, or suspected exposure, to a hazardous substance exceeding allowable limits (quantity level or exposure time) shall be reported immediately to the Occupational Health Facility (OHF) or, if not located at KSC, to a licensed medical physician. All exposures shall go through the OHF or licensed medical physician (if not located at KSC) for medical evaluation and treatment. Confirmed exposures exceeding allowable limits shall be reported and documented as a mishap or close call. #### e. Musculoskeletal Disorders (MSD) Lost time cases due to a MSD or repeated trauma injury or illness shall be classified as a mishap. For these cases, the date of diagnosis by a licensed physician or the first official lost time day, whichever occurs first, is the date that shall be entered into the NASA IRIS database. #### f. Occupational Illness For cases of occupational illness due to long term exposure to hazards, such as abestosis, silicosis or hearing loss, the date of diagnosis by a licensed physician or the first official lost time day, whichever occurs first, is the date that shall be entered into the NASA IRIS database. #### Injuries Incurred as a Result of a Recreational Activity g. Recreational activitiy injuries shall be classified as NASA mishaps if the employee is on duty and is required to participate for job certification, training or by labor agreement. Each program/project or directorate organization sponsoring such recreational activity shall determine which activities employees can perform. Recreational activities shall be designed to minimize the potential for personal injury. Injuries resulting from off-duty use of KSC exercise facilities are not classified as NASA mishaps. On-duty, nonsponsored recreational activities are prohibited. #### h. Natural Phenomenon Mishaps Damage resulting from natural phenomena or acts of nature (e.g., flooding, hurricanes, tornados, lightning strikes, wild fires), without human intervention, shall be classified as a NASA mishap by the organization owning/controlling the damaged or lost property. An assessment of all damages incurred shall be performed and cost of repairs and/or replacement shall be tracked and entered into the NASA IRIS database. Natural phenomenon damage resulting from or made worse by failure of personnel to follow established procedures or standard practices, such as damage caused by animals as a result of personnel failing to properly secure and protect facilities and equipment, is not considered damage from natural phenomena, but is still classified as a NASA mishap or close call. ### High Visibility Mishaps and Close Calls Mishaps or close calls that may draw media attention, cause embarassment to NASA, or other events deemed important by NASA management are considered "high visibility" mishaps or close calls and may warrant a full NASA mishap investigation board. Mishaps and Close Calls Involving Property Damage Reported damage shall include the direct cost of replacement of damaged equipment and parts, plus labor, as well as the cost of cleanup and environmental investigation activity and restoration of property as required by environmental regulations. The reportable cost also includes replacement of any lost commodity (i.e., compressed gasses, coolants, propellants). In cases where replacement parts are available from salvaged or excess equipment at little or no cost to NASA, the actual costs of replacement parts may be used plus labor. The cost of the safety mishap investigation is not included. #### 2.3 REPORTING MISHAPS AND CLOSE CALLS - a. General Requirements (Civil Service and Contractor) - (1) **Initial Reporting** Initial reporting requirements for mishaps and close calls are based on the preliminary, worstcase assessment of actual or potential severity and visibility. #### NASA IRIS Database (2) All mishaps and close calls shall be entered into the NASA IRIS database within 24 hours of the event. As much information as is available at this time shall be entered. IRIS cases shall be continuously updated as new information becomes available and, at a minimum, updated at least every 30 days until it is closed. When entering a close call into the NASA IRIS database, the worst case potential mishap severity (Type A, B, C or D) shall also be entered. For mishaps or close calls involving injury, the occupational health representative or other medical person shall provide the appropriate medical information
regarding the person(s) injured and the nature of the injury(s) to the appropriate S&MA division for inclusion in IRIS. - b. Type A, Type B, or Other Highly Visible Mishaps and Close Calls (Civil Service and Contractor) - In order to facilitate the timely investigation and other notification requirements of NPR 8621.1, the responsible Civil Service or Contractor program/project or directorate organization shall immediately (within 1 hour) provide initial notification by telephone or in person to the Safety and Mission Assurance Directorate (SA) in accordance KDP-KSC-P-1473. Initial notification shall include the time, the location, a description of the event, the organization(s) involved in the event, and a preliminary worst case estimate of the injuries/illness and/or cost estimate of the damage resulting from the event. - (2) Additional center-wide and NASA Headquarters notifications will be provided by the Safety and Mission Assurance Directorate in accordance with KDP-KSC-P-1473. - (3) Mishap notification must be acknowledged verbally, by e-mailed, or by fax. Information to be reported includes the Center name, location of incident, time of incident, number of fatalities (if known), number of hospitalized employees (if known), type of injury (if known), type of damage (if known), contact person, contact person's phone number, and a brief description of the mishap. In addition, within 24 hours, the S&MA Directorate shall follow up the initial phone notification to NASA Headquarters by sending an electronic notification that includes the following information: Center submitting report; author of report; author's phone number and mail code; date report submitted; time report submitted; incident date; incident time; incident general location; exact location (if known); responsible organization; organization's point of contact; point of contact's phone number and mail code; mission affected; program impact (if known); number and type of injuries or fatalities (if known); type of damage to equipment, flight hardware, flight software, or facilities; estimate of direct cost of damage; and a brief description of the mishap or close call. - (4) Within 8 hours of a work-related mishap involving death of a Federal employee, or the hospitalization for inpatient care of three or more employees (provided at least one is a Federal employee) within 30 workdays after the mishap, the S&MA Directorate shall notify OSHA and provide the following information: the establishment name, location of incident, time of incident, number of fatalities (if known), number of hospitalized employees (if known), contact person, contact person's phone number, and a brief description of the mishap. After notifying OSHA, the S&MA Directorate shall inform NASA Headquarters that an oral report has been provided to OSHA. Contractors are responsible for reporting directly to OSHA when the mishap involves contractor personnel only. Reference KDP-KSC-P-1473. - (5) For Type A, B or highly visible mishaps and close calls, a formal Mishap Investigation Board (MIB) (Contractor and/or Civil Service) shall be formed per Section 2.5.a. Reference KDP-KSC-P-1474 for Mishap Board formation and implementation. - c. Type C or D Mishaps and Close Calls - (1) Contractor The responsible contractor organization shall, within four hours of the event (or by 7:30 AM the next workday for mishaps occurring during shifts other than first shift), submit an initial report (e-mail or fax) to the S&MA Directorate in accordance with KDP-KSC-P-1473. The initial report shall contain a description, the time, the location, and the organizations involved in the event, a preliminary worst case estimate of the injuries and/or cost estimate of the damage resulting from the event. Within 15 working days, the responsible contractor organization shall enter the mishap report (see Section 2.6) into the NASA IRIS database. - (2) Civil Service - (a) Civil Service Mishaps Involving Injury or Illness (and which may also include property damage) For mishaps involving more serious injury or illness involving direct emergency transport to off-site medical facilities, the emergency responders shall provide the OHF initial medical information documented on a KSC Form 6-2. For nonlife threatening injury or illness, the employee shall notify their supervisor and report to the OHF. The OHF shall record the medical evaluation on a KSC Form 6-2, and forward a copy to the S&MA Institutional Safety and Quality Division and to the employee's supervisor (yellow copy). Upon receipt, the employee's supervisor shall fill out Section III of the KSC Form 6-2 and forward it to the S&MA Institutional Safety and Quality Division within 72 hours of the mishap. The S&MA Institutional Safety and Quality Division shall enter the information into the NASA IRIS database, and update as appropriate. (b) Civil Service Mishaps or Close Calls Involving Property Damage Only For mishaps or close calls involving damaged property only, the responsible Civil Service organization shall provide initial notification to the S&MA Directorate in accordance with KDP-KSC-P-1473 within 4 hours of the mishap or close call (or by 7:30 AM the next workday for mishaps occurring during shifts other than first shift). The appropriate S&MA Division within the Safety and Mission Assurance Directorate shall ensure that the responsible civil service organization enters the data into the NASA IRIS database, and update as appropriate. - d. Reporting Days Away From Work (Civil Service and Contractor) - Civil Service and Contractors a. Days away from work shall be entered into the NASA IRIS database by the responsible contractor organization (for contractor days away from work) or the S&MA Institutional Safety and Quality Division (for Civil Service days away from work). Days away from work shall be counted for the calendar days away from work for 180 days duration. Reporting of days away from work beyond 180 total days away due to a single injury or illness is not required. A day away from work is defined as a full work day, and results from a nonfatal traumatic injury, or a nonfatal nontraumatic illness, that causes one or more days away from work beyond the day or shift on which it occurred. Only days away from work directed or approved by a licensed physician shall be recorded as days away. In calculating total days away from work, the total number of calender days off prescribed by the physician shall be counted, even if the employee would not normally work on some of those days (e.g., weekends, holidays or scheduled days off). For injuries or illnesses that become long-term or permanent disability cases, the mishap report status shall be updated in the NASA IRIS database by the responsible contractor organization or the S&MA Institutional Safety and Quality to reflect the new mishap classification. #### (2) For Civil Service Only When an injury or illness becomes a "time away from work" case, the S&MA Institutional Safety and Quality Division Chief or Lead Engineer shall provide notification in accordance with KDP-KSC-P-1473, Mishap Reporting and Investigating. Other NASA Centers Performing Work at KSC e. For work performed at KSC that is exclusively under the control of another or other NASA Center(s) (i.e., without the participation of KSC employees or contractors), initial and follow-up mishap/close call reporting will include notification of the host KSC program/project and S&MA Directorate. This requirement is in addition to their own NASA Center mishap/close call reporting and follow-on investigation, corrective action, and lessons learned requirements. #### 2.4 **INVESTIGATION** - Mishap Investigation Boards (MIBs) a. - (1) NASA MIBs NASA Mishap Investigation Boards shall be formed for all Type A or B mishaps. Mishap Boards may also be formed for other mishaps or close calls as deemed necessary by the Center Director or program/project or organizational Director. Mishap Board investigations shall be accomplished in accordance with the requirements of NPR 8621.1 and KDP-KSC-P-1474, Mishap Investigation Board. #### (2) Contractor MIBs For NASA mishaps resulting from NASA contractor operations, the NASA Board Appointing Official, with the concurrence of the S&MA Director, may delay the formation of a separate NASA Mishap Investigation Board (or activity) pending the review and acceptance of the contractor report. In this case, a letter signed by the NASA Board Appointing Official shall be sent to the contractor notifying them of NASA's intent to delay formation of a separate NASA Mishap Investigation Board. NASA slao retains the option of providing a Government representative on Contractor-managed MIBs. b. Non-board Mishap and Close Call Investigations All mishaps and close calls shall be investigated to identify the root cause(s) and other contributing cause(s). Within 30 working days of the mishap or close call, the results of the investigation shall be documented in the NASA IRIS database (reference KDP-KSC-P-1473, Mishap Reporting and Investigation and KDP-KSC-P-2111, Reporting Close Calls). (1) Civil Service Non-board Mishap and Close Call Investigations For mishaps or close calls with damage to property exclusively under the control of NASA Civil Service personnel, the appropriate S&MA Division within the Safety and Mission Assurance Directorate shall ensure that the NASA program/project conducts the investigation and enters the data into IRIS. When injury or illness to civil service personnel is involved, the S&MA Institutional Safety and Quality Division, in conjunction with the NASA program/project or S&MA Division, shall conduct the investigation. Civil Service injury and illness investigation results shall be documented in Section III of KSC Form 6-2 and submitted to the S&MA Institutional Safety and Quality Division for entry into the NASA IRIS database. The program/project or S&MA Division shall maintain involvement and
oversight in the investigation and analysis, and provide consultation on an as needed basis. (2) Contractor Non-board Mishap and Close Call Investigations Contractor organizations are responsible for investigating their own nonboard mishaps and entering the results of the investigation directly into the NASA IRIS database. Both the appropriate program/project and the appropriate S&MA Division shall maintain insight into the investigation of contractor mishaps, track progress as documented in the NASA IRIS database and perform independent assessments of the investigation results and the effectiveness of the identified corrective action. #### 2.5 MISHAP REPORTS - a. Mishap Investigation Board (MIB) Reports - The mishap investigation report shall contain a description of the structured analytical techniques used to identify causal factors, detailed documentation of mishap data, discussion of root cause(s), and significant observations, findings and recommendations. The report shall also include a proposed Corrective Action Plan (CAP) to be used as a framework for further development and implementation. Witness statements shall be kept separate from the main portion of the report so that they can be easily separated and withheld from release and distribution of the report. NPR 8621.1 contains detailed information on report requirements and format. Within 75 workdays of the mishap or close call, the MIB shall submit the completed and signed mishap report to the appointing official. Once the report is approved, the MIB Chair shall ensure that the NASA IRIS database is updated with the report and proposed corrective action plan and distribute the final report in accordance with NPR 8621.1 and KDP-KSC-P-1474. The S&MA Directorate (Institutional Safety and Quality Division) is the official repository for all MIB reports and associated documentation. Witness statements and medical records shall be sealed and retained by the S&MA Directorate in a locked file, and are not part of the distributed MIB report. - (2) Contractor reports shall undergo a formal review by NASA, and, once accepted, a formal letter of acceptance from the NASA Board Appointing Official will be provided to the Contractor. - b. Non-board Mishap Investigation Board Reports A mishap report documenting investigation results including identification of root cause(s), significant observations, findings, and recommendations shall be entered into the NASA IRIS database within 30 days of the event. #### 2.6 **CORRECTIVE ACTIONS** Corrective action(s) shall be determined and implemented in order to prevent recurrence of similar events. Within 45 working days of the mishap or close call (or approval of the report in the case of mishap board investigations), the responsible program/project or directorate organization shall develop the CAP (or further develop the proposed CAP in the case of MIBs) and enter it into the NASA IRIS database. The CAP shall provide corrective action(s) for the root cause(s) identified, and for all other contributing factors to the mishap or close call. The CAP shall provide a description of the corrective action(s), and identify (to the lowest level possible) the organization(s) responsible for implementation and the organization(s) responsible for ensuring completion the action item(s). In the case where there are no corrective actions that could reasonably be taken, a statement stating this shall be entered into the NASA IRIS database. The program/project and S&MA Division is responsible for monitoring corrective actions activities for mishaps and close calls, and to determine if they are carried out according to plan. #### 2.7 **LESSONS LEARNED** All mishaps and close calls shall be evaluated for any lessons learned. When the evaluation results in lessons learned, then the lessons learned shall be submitted to the NASA Lessons Learned Information System (LLIS) in order to share this information and prevent recurrence. The LLIS is available to all NASA and NASA contractor personnel at http://llis.nasa.gov. Assistance in the use of this system can be obtained from the EA Directorate. #### 2.8 **METRICS AND TREND ANALYSIS** a. Safety Statistics Record (SSR) A Safety Statistics Record, KSC Form 6-22, shall be completed monthly by all KSC contractor organizations and submitted to the NASA S&MA Integration Division for use in developing Center-wide safety metrics. If adjustments, corrections or additions to a previous fiscal year's statistical data occur, an updated year-end SSR for the affected fiscal year shall be submitted. #### b. **Trend Analysis** All KSC program/project or directorate organizations shall perform regular analysis of safetyrelated mishap and metric data in order to identify trends requiring corrective or preventive actions. 2.10 Mishaps Involving Payload Customers, Resident Office Personnel and Official Visitors For mishaps exclusively affecting non-KSC Civil Service or Contractor personnel or property (i.e., personnel who are conducting official business on KSC but who are not NASA/KSC Civil Servants or Contractors), KSC will provide initial response, medical services and control of the mishap scene. In this case, the investigation and reporting process will be determined by the appropriate Memorandum of Understanding (MOU) or Customer Agreement, or the organization's Center or corporate safety office. These mishaps will not be counted as NASA/KSC mishaps unless otherwise stated by a formal agreement. The appropriate NASA/KSC program/project and S&MA Directorate shall be provided insight into the investigation and be provided courtesy copies of the final mishap report. #### 3.0 **SAFETY PROGRAM** Safety Enforcement a. Each contractor's safety program shall contain provisions for compliance with and enforcement of safety requirements. A means of auditing and enforcing these requirements shall be developed and maintained. - b. Safety Program Documentation - (1) **Facility Inspection Summary** Program/project or S&MA Institutional Safety and Quality Division shall identify potential hazards at least annually. The operating organizations shall keep the following information: - Facility name and building number (a) - (b) Date inspected - Hazards identified from the inspection (c) - (d) Status of hazards - Open/Closed - (2) Safety Statistics All program/project or directorate organizations shall submit a SSR (KSC Form 6-22) per the provisions of Section 2.8 of this Attachment. **ATTACHMENT C** **RESERVED** ### ATTACHMENT D # KSC SUPPLEMENT TO NFPA 70. NATIONAL ELECTRIC CODE #### 1.0 **GROUNDING AND BONDING** All sources of static electricity discharges shall be grounded when such discharge would create an unsafe situation. Tank cars, storage tanks, connecting pipes, hose lines, and nozzles shall be bonded together prior to the loading or unloading of flammable materials. Where propellants are stored or handled, facilities shall be provided for personnel to dissipate static charges from their person. #### a. Personnel Grounding Personnel grounding devices (e.g., legstats, wristats, conductive footware) shall be worn by all personnel handling Category A electro-explosive devices (EED) when the Faraday caps are removed, or installing Category B items on/in units that will be Category A when the installation is complete, or when working within five (5) feet of exposed solid grain. When using legstats, personnel must stand on a conductive surface and use legstats in pairs to ensure one foot remains in contact with the ground at all times. Personnel required to wear these devices shall ensure resistance checks are performed using a conductive shoe tester prior to operations. The resistance measured from facility ground to the wearer must be between 10,000 ohms and 1 megohm. Reverification of grounding will be necessary if personnel remove their conductive shoes, legstats, wristats, or leave the immediate area where the operation is taking place. The grounding devices shall be removed upon leaving the ordnance operation area. Personnel will exercise caution to avoid all electrical sources when wearing personal grounding devices. - b. Grounding of Flight Hardware - (1) The Orbiter shall be electrically grounded at all times. - (2) After moving an External Tank (ET) between the Turn Basin and the Vehicle Assembly Building (VAB), the ET transporter static ground strap shall be connected to VAB ground. - The forward assembly/aft skirt shall be connected to facility ground except when transporting. Forward assembly/aft skirt to pallet to transporter ground shall be maintained during moves. - A payload or canister containing explosives or hazardous fluids shall be grounded to facility ground upon arrival at the facility/handling mechanism. - Grounding of Tools, Equipment, and Materials C. - Pneumatic (air motor) tools used on hardware containing EEDs, within 10 feet of open grain, or in petroleum/oil/lubricant areas shall be fitted with a conductive air supply hose or be connected to facility ground. Conductive air supply hoses shall be included in a scheduled preventive maintenance program that shall test and verify continuity. - The Solid Rocket Motor (SRM) transporter shall be grounded to facility ground at all times when moving in or out from under a segment. When moving a loaded segment, the transporter shall be grounded prior to entering (or until after exiting) a building. The transporter shall not enter a building at the Rotation, Processing, and Surge Facility (RPSF) without being grounded. Segment to pallet to transporter ground shall be maintained during moves. - (3) All material in contact with open grain shall be grounded. - For horizontal SRM segment grain inspection the first pad shall be grounded prior to installation. Subsequent pads shall be butted/ overlapped to ensure electrical continuity of pads. - (5) Conductive plastic sheeting (velostat) shall be placed on railcar surface at entrance to the bore. Sheeting
shall be grounded to common ground with railcar prior to installation. - d. Grounding During Hoisting of Flight Hardware - (1) When explosives and/or flammable fluids are involved, electrical grounding shall be required as follows: - Ground crane hook to facility ground (same potential as the load) before connecting to (a) the load. - (b) Use bonding strap from load to hook when satisfactory contact (continuity) is not obtained. - The ground may be disconnected after the load is lifted clear of its supporting structure, but shall be reconnected to facility ground as soon as possible while the load is still suspended. - (d) The final ground /detachment shall be at least 10 feet away from any open grain/explosives. - (e) Voltage checks on the crane hooks shall be performed prior to lifting flight hardware containing explosives. The voltage shall not exceed 100-mV direct current (dc) and 100-mV alternating current (ac) Root-Mean-Square (RMS) measured across a 1-ohm resistor. The voltage checks shall be performed while operating the crane; all crane motions shall be checked. Crane hook voltage checks shall not be required for lifting of other hazardous commodities providing the crane hook and load are properly grounded. - (2) All grounding devices shall be checked to ensure proper resistance prior to payload canister lift. # 2.0 THREE-PHASE POWER CONNECTIONS a. Three-phase power sequencing shall be verified in each KSC facility prior to connection, including after facility modification or outages. b. The phasing of the power source shall be verified prior to each closure of the payload canister transporter shore power contactor switch. The phasing of the payload canister transporter systems and subsystems shall be verified upon first use or component replacement. ### ATTACHMENT E ## KSC SUPPLEMENT TO NPD 8710.5. NASA SAFETY POLICY FOR PRESSURE VESSELS AND PRESSURIZED SYSTEMS #### 1.0 **PREFACE** This Attachment is issued to assign responsibilities and provide instructions for the design; certification, recertification, inservice inspection, and documentation required for ground-based pressure vessels and pressurized systems. The provisions of this Attachment apply to all KSC organizational elements and to their associated contractors and subcontractors. This Attachment defines organizational responsibilities, defines items excluded from certification requirements, contains specific criteria for inspection, analysis, documentation, testing, nondestructive examinations, marking and labeling of pressure vessels and pressurized systems, and provides reporting data input requirements. Authority for this Attachment is NASA Policy Directive (NPD) 8710.5, Safety Program for Pressure Vessels and Pressurized Systems. #### 2.0 **DEFINITIONS** Pressure Vessel/Systems (PV/S)-related definitions are included (and annotated) in the Glossary. #### 3.0 **POLICY** It is KSC policy that all ground-based Pressure Vessels and Pressurized Systems (PV/S) which are not excluded per Appendix A of this Attachment, shall be certified/recertified in accordance with ASME. Boiler and Pressure Vessel Code. Section VIII, Divisions 1 and 2, ASME Code for Pressure Piping, B31.3, and National Board Inspection Code, ANSI/NB-23. Additionally, all pressure vessels and pressurized systems shall comply with KSC design standards KSC-STD-Z-0005 through KSC-STD-Z-0009. All High PV/S shall be safe to operate and be subject to Inservice Inspection (ISI) and periodic recertification to maintain personnel and equipment safety. The following criteria applies: All new PV/S shall be designed, fabricated, installed, operated, maintained, a. certified, and recertified in accordance with applicable codes, standards, and quides. For existing PV/S which does not conform to these codes, standards, and guides. Supplemental analyses, tests, and examinations shall be performed to ensure that the safety of personnel, equipment, and facilities is not compromised. - b. Periodic inspection and maintenance activities shall be specified and documented throughout the usage history of the PV/S. Inspection procedures shall be developed on the basis of established codes and standards or as the result of engineering evaluation. - C. Vessels and systems on standby/contingency, either with or without pressure, should be treated as if they are in continuous service, and the certification of such PV/S shall be maintained to conform to expected service conditions. - d. New pressure vessels or systems shall be certified in accordance with the requirements in this Attachment. - In instances where policies set forth in this Attachment are in conflict with KSC e. pressure systems design criteria and specifications (e.g., KSC-STD-Z-0005). the more stringent requirement shall prevail. #### **APPLICABILITY AND SCOPE** 4.0 This Attachment applies to all KSC program/project or directorate organizational elements, KSC contractors/subcontractors, and to all other personnel who design, own, or operate pressure vessel or pressurized system at KSC, or on property managed by KSC. #### 5.0 **RESPONSIBILITIES** a. Heads of Primary Organizations Heads of program/project or directorate organizations having Design, Operation and Maintenance (O&M), or sustaining engineering responsibility, are responsible for ensuring that: - (1) Design and modification of pressurized systems for use at KSC, or where KSC has design, O&M, or sustaining engineering responsibility are in accordance with current codes, standards, and guidelines. - (2) Necessary documentation to support the certification program is received for all new pressure vessels, pressurized systems, and all systems being modified, and that such documentation is transmitted to cognizant O&M organizations and to the KSC Pressure Systems Manager (PSM) via Document Release Authorization (DRA). - (3) Field surveys are performed to verify PV/S are properly categorized and included or excluded in the PV/S certification program, as appropriate. - (4) An inventory database is updated and maintained for pressure vessels and systems. - A data management system is established for maintaining files containing the documentation required to certify each vessel or system. - (6) All PV/S are marked or labeled for traceability in the certification program. - Review of existing documentation is performed to determine suitability to support (7) certification, and missing documentation is obtained or developed. - (8) A 20-year ISI plan is developed and implemented. - (9)A certification report describing all of the steps involved, along with the rationale for certifying pressure vessels and systems for continued service is provided. - (10)Training requirements for personnel working on pressure vessels and systems are established. - An individual is assigned to represent the program/project or directorate organization (11)in all matters relating to the PV/S certification program and is identified to the PSM per a letter assigning the individual to the Pressure Vessels/Systems Committee. NOTE: The above responsibilities do not apply to the Director of International Space Station/Payload Processing for payload-associated Ground Support Equipment (GSE) supplied by other NASA centers and government agencies. This equipment is covered by KSC Procedural Requirements (KHB) 1700.7 or Eastern Western Range (EWR) 127-1. b. KSC Pressure Systems Manager (PSM) The PSM is responsible for: - (1) Assuring that necessary documentation to support the certification program is maintained on all systems owned or operated by KSC or its contractors. - Reviewing and approving PV/S certification criteria for special cases not covered in this Attachment: reviewing certification implementation schedules, defining required documentation, analysis, inspection, testing, nondestructive examination, and reporting requirements for pressure vessels and pressurized systems. - (3) Evaluating exclusion criteria and approving exclusions other than those listed in this Attachment. - Reviewing disposition (i.e., derate, rerate, repair, scrap) of all pressure vessels or systems that do not meet inspection or testing requirements. - Reviewing, as necessary, hazardous and nonhazardous inspection and test procedures utilized by the certification program, to assure adequacy of safety considerations. - Reviewing and approving supplemental analysis, tests, procedures, and examinations, (6) as necessary. - (7) Evaluating proposed waivers, deviations, and variances involving PV/S, covered by the certification program. - Maintaining a baseline inventory/status of all PV/S for which KSC has design or operational responsibility. - Reviewing, evaluating, and have readily available all PV/S certification reports. (9) ### 6.0 GENERAL PRESSURE VESSELS/SYSTEMS (PV/S) CERTIFICATION PROGRAM **REQUIREMENTS** - a. Ground-based PV/S listed in Appendix A of this Attachment shall be exempt from the requirements of this Attachment. - Existing PV/S not conforming to these procedural requirements shall have supplemental analyses, tests, and examinations performed to meet the intent of ASME. - A vessel or system that has been de-rated shall be re-rated to the original or new operational parameters only after appropriate testing, examination, repair, alteration, modification, documentation, and engineering analysis. - d. Inactive vessels or systems being placed in service shall be recertified when any of the following conditions exist: - The vessel or system is to be used at a higher or lower temperature, or at a higher pressure, than specified in the original design. - The vessel or system shows visible indication of deterioration from corrosion or improper handling. - (3) The vessel or system has not been certified per the requirements of this Attachment. - There is a change in service conditions that would require that a new inspection (4) interval be developed. - The vessel or system has been altered, repaired, modified, or reconfigured to
the extent that any previous certification is invalidated. - e. Vessels and systems on standby/contingency, either with or without pressure, shall be treated as if they are in continuous service and the certification of such PV/S shall be maintained to conform to expect service conditions. - Initial certification shall be given only after all known safety-related discrepancies have been corrected. Non-safety related discrepancies shall be dispositioned and corrected in conjunction with regularly scheduled maintenance. - Program/project or directorate organizations that process spacecraft, missiles or q. launch vehicle systems with one or more Graphite/Epoxy (Gr/Ep) Composite Overwrapped Pressure Vessels (COPVs) shall be required to submit data that demonstrates the requirements in Appendix B have been met. - h. When systems of different pressure ratings are connected, a relief device shall protect each section of the system. In those cases where the maximum regulator inlet pressure exceeds the design pressure of the section downstream of the regulator, the relief device shall be set no higher than the design pressure and be sized to prevent the pressure from rising more than 10 percent above the design pressure. - Systems requiring a pressure regulator and/or a pressure relief device or both shall not be operated unless such components are in place and properly set. - Pressure systems shall always be depressurized before disconnection, repairs, or replacements are attempted. - k. When a pressure system is opened for maintenance or other purposes and a segment is capped, an engineering analysis shall be performed to determine whether pressure relief capability needs to be added to the capped segment. If a previous assessment of the system has been performed, a new engineering assessment shall be required only if the configuration has changed. Relief capacity shall be added or other measures taken, to prevent over pressurization. - Only portable, Department of Transportation (DOT) certified bottles/vessels shall be I. transported under pressure. - PV/S shall be exposed only to those fluids that have been demonstrated to be compatible with the vessel or system materials. - Metallic and nonmetallic flex hoses shall be assembled, connected and disconnected in accordance with the manufacturer's specifications and recommendations. Rated working pressure for all flex hose assemblies shall not exceed 25 percent of the manufacturer's specified minimum burst pressure. - Hoses over 0.6 meters (2 feet) in length, pressurized to 1.03 MPa [150 lb/in2 (gage)] or higher, shall be restrained at each end by an approved stainless resistant device (Figure E-1). A hose containment grip (Figure E-2) shall be installed across each intermediate union or splice on hoses over 1.2 meters (4 feet) in length. Adequacy of the structure to which hose end restraints are attached shall be determined by engineering. In addition to the ends of the flexhoses being restrained, flexhoses shall be restrained every 6 feet of length with sandbags. #### (1) Nonmetallic Hoses Hoses over 0.6 meters (2 feet) in length, pressurized to 1.03 MPa (gage) [150 lb/in2 (gage)] or higher, shall be restrained at each end by an approved stainless restraint device (Figure E-1). A hose containment grip (Figure E-2) shall be installed across each intermediate union or splice on hoses over 1.2 meters (4 feet) in length. Adequacy of the structure to which hose end restraints are attached shall be determined by engineering. Restraint requirements are not required for: - Hoses in systems where rapid pressure depletion will prevent whipping. - Hoses contained by surrounding structure that can provide protection to personnel and (b) hardware. - Hoses outward from the end of swing arms, tail service masts, etc., to flight vehicle (c) interfaces. ### (2) Metallic Hoses Hose restraint, other than that which is provided by the fluid system piping to which the hose is connected, shall not be required if the manufacturing, testing, and inspection requirements of this Attachment are adhered to. ## 7.0 DOCUMENTATION REQUIREMENTS The Contractor program/project or directorate organization shall prepare and maintain certification files for each vessel or system under its jurisdiction. The following documentation shall be required and shall either be retained in the permanent PV/S certification file or be identified and retrievable from appropriate engineering documentation centers: - a. Pressure Vessels - (1) Manufacturer's drawings: The drawings shall be either certified shop fabrication drawings or as-built drawings. The drawings shall contain the following: - (a) Manufacturer's name and address. - (b) Date of manufacture (see vessel nameplate). - (c) Dimensions and details of construction. - (d) Design and operating conditions, including service fluid, operating temperature, and MAWP. - (e) Material thickness (head, shell, etc.). - (f) Material corrosion allowance. - (g) Identification of materials, including types of alloys, tensile properties, and impact properties. - (h) Efficiency of weld joints. - (i) Nondestructive Examination (NDE) performed. - (j) Types of pressure tests performed. - (2) Design calculations Design calculations for pressure vessels shall include MAWP, temperature, wind, vibration, and any other applicable loading. - (3) Manufacturer's data report(s) (ASME Forms U-1, U-1A, U-2, U-2A, U-3, U-4, A-1, A-2, A-3 as applicable.) - (4) Inspection, examination, and test records. - (5) Facsimile of nameplate stamping. #### b. **Pressure Systems** - (1) End-to-end system drawings, including schematics, which show (as a minimum) system operating pressures, safety device set pressures, and line sizes and wall thickness of piping or tubing. Part numbers traceable to the manufacturer shall identify all pressurized components. For existing systems where components cannot be positively identifiable, such components shall only remain in service, provided a review of fabrication and installation drawings, maintenance records, manufacturer's data, etc., verifies proper components are installed. - (2)KSC component specification drawing, component maintenance drawing, or equivalent, or vendor data for each unique pressurized component in the system suitable for verifying pressure rating, materials of construction, flow parameters, operating characteristics. and relief device capacity to maintain system pressure within ASME Code allowable limits. - Approved operating or preventive maintenance procedures that describe requirements for periodic system maintenance and testing, relief device and pressure gage setting and calibration criteria, and flex hose inspection and test criteria. - C. Repaired, Altered, or Modified Systems and/or Vessels - Alterations or repairs to vessels and system modifications shall be thoroughly (1) documented in the appropriate system certification file. - Vessel alteration or repair documentation shall include calculations, drawings, (2) specifications, NDE reports, and other pertinent documentation, as applicable. - Any vessel or system that is altered, repaired or modified shall be recertified. A revised certification report shall be issued that describes the alterations, repairs, or modifications. #### 8.0 **TESTING REQUIREMENTS** #### General a. - All new, repaired, or modified systems or portions thereof, shall be pressure and leak tested prior to activation. Testing of pressure systems shall be in accordance with applicable system and equipment technical manuals. - (2) Leaks shall not be repaired when a system is under pressure or the test fluid has not been drained. - A test record for each pressure vessel shall include the manufacturer's data (e.g., design specification, applicable code for design, test/inspection criteria, operating instructions, location of any dimensional check points, and installation information). #### b. Nonflight Pressure Vessel New pressure vessels shall be pressure tested by the manufacturer in accordance with the applicable code. For AMSE Code vessels, this test shall be one time only. All repairs, alterations and retest of ASME Code vessels shall be in accordance with American National Standards Institute (ANSI)/NB-23. Vessels designed per 49 Code of Federal Regulations (CFR) shall be retested/requalified in accordance with 49 CFR requirements. Where 49 CFR regulations do not specify retest, a retest procedure shall be developed." C. Flight Vehicle Vessels and Systems Pressure vessels and systems that have been pressurized to operating pressure as complete systems prior to delivery to KSC shall not require further testing as part of the receiving inspection/ acceptance activity. Documented evidence of such previous tests shall accompany the vessel/system. Retest shall be performed only as specified in approved Technical Operating Procedure (TOP). - (1) Flight Vehicle Fracture Mechanics Controlled Vessels and Systems - Space Shuttle Program/International Space Station (SSP/ISS) Pressure vessels that are controlled by Fracture Mechanics Plans shall be tested/pressurized to levels specified in the appropriate Fracture Mechanics Plan and JSC 08934, "Shuttle Operational Data Book," Volume I, "Shuttle Systems Performance and Constraints Data." - Pressure vessels and systems shall be processed through turnaround flow at (b) temperature adjusted operating pressures, only if the operating pressures are sufficiently below the threshold pressures to avoid subcritical flaw growth, as allowed by the applicable Fracture Mechanics Plan. The MAWP shall be specified in the applicable operating procedure. - Fracture Mechanics controlled vessels/ systems shall be pressurized to operating pressures, using specified liquids/gases, without remote controls, only if the vessels/systems have been previously pressurized to operating pressure levels. - 1. A logbook shall be maintained on each Fracture Mechanics controlled pressure vessel/system
processed at KSC. The log shall identify how many times the vessel/system has been pressurized, the pressure levels, liquids/gases used, duration of the pressure cycles, and any other pertinent data. The log shall also identify the total number of cycles for which the vessel/system was designed. - A logbook shall be maintained for each PV/S processed at KSC. The log shall identify how many times the vessel/system has been pressurized, the pressurization levels, fluids used, duration of the pressure cycles, and any other pertinent data. The log shall also identify the design criteria used in fabricating the vessel/system. - (2) Flight Vehicle Vessels Not Controlled By Fracture Mechanics - PV/S shall not be pressurized above 50 percent of design burst pressure, adjusted for temperature. - PV/S shall be processed through turnaround flow at pressure levels not to exceed 50 percent of design burst pressure, adjusted for temperature, if warranted by operational considerations. - PV/S that have not been tested as a system prior to delivery to KSC shall require (c) personnel evacuation and remote controls for the initial (first-time) pressurization and for any subsequent pressurization that will exceed the highest level of pressure reached during previous testing as a system. - (d) PV/S shall be pressurized using fluids specified in JSC 08934, "Shuttle Operational Data Book," Volume I, "Shuttle Systems Performance and Constraints Data." Pressurization levels specified herein shall not exceed those specified in JSC 08934, Volume I. - (3) For flight vehicle systems utilizing both fracture mechanics controlled and nonfracture mechanics controlled pressure vessels, pressurization at KSC shall be performed at pressure levels that do not exceed that allowed for the weakest link in the system. The lowest design pressure in the system shall be used as the basis for the pressure to be applied. - (4) Any pressurization of systems or components above 25 percent of design burst will require a minimum 200-foot control area when the system or component contains hazardous fluids. - d. Flex hoses (Nonmetallic and Metallic) - (1) Hydrostatic Test - (a) Each hose assembly shall be hydrostatically tested to between 1½ times to 2 times the design rated working pressure at the time of manufacture/ fabrication. - (b) Hydrostatic retest of flex hoses is not required unless they are modified or repaired. Flex hoses shall be retested to verify the integrity of the modification or repair. - (2) Leak Test - (a) Permanently installed hoses used with toxic/lethal fluids, regardless of operating pressure, shall have the end fittings and intermediate splices leak tested, as a minimum, annually. The leak test shall be performed at the maximum system operating pressure using an inert gas. - (b) Temporary use hoses used with toxic/lethal fluids, regardless of operating pressure, shall have the end fittings and intermediate splices leak tested, as a minimum, annually, at the design rated operating pressure of the hose using an inert gas. # 9.0 INSERVICE INSPECTION (ISI) AND TEST PLAN - a. General - (1) The operating organization shall develop a 20-year ISI and test plan in accordance with NASA Procedures and Guidelines (NPG) 1700.6, Guide for In-Service Inspection of Ground-Based Pressure Vessels and Systems. - (2) The ISI plan shall be developed based on the evaluation of the documentation, field inspection results, NDE results, and the engineering evaluation. - (3) When a 20-year ISI plan has been prepared by a previous operating organization, the current operating organization shall be responsible for implementing and updating the ISI plan. - b. Plan Reporting and Documentation - The ISI plan shall be presented in either a tabular or matrix format in the certification (1) report. A sample ISI Form is shown in Figure E-3. - (2) The ISI plan shall provide development rationale in the certification report. - C. Plan Implementation and Tracking - (1) It shall be permissible to conduct the ISI in conjunction with routine system maintenance, where appropriate. - (2) A tracking system shall be established to ensure that all required inspections and tests are completed on schedule. #### 10.0 **INSPECTION REQUIREMENTS** - a. The following shall be required for the inspection of KSC Pressure Vessels: - (1) Proper setting and flow capacity of relief device(s) associated with the vessel shall be verified. - (2) Vessels designed for permanent installation shall be reinspected anytime they are moved to a different location. - Perform visual examination of vessels on a case-by-case basis, at an interval developed from NPG 1700.6A criteria. For vessels at space vehicle launch pads or other locations that are subject to severe environmental conditions, including exposure to solid rocket exhaust products, shock, and vibration from the launch environment, the external visual examination interval shall not exceed two years. For other vessels not exposed to such extreme conditions, the external visual examination may be extended to no more than 5 years. The examination interval for hydraulic accumulators shall not exceed 5 years. Vessels manufactured in accordance with 49 CFR regulations shall be inspected as defined in 49 CFR. In the event 49 CFR does not specify periodic visual inspection, an approved inspection plan may be used. Inspection intervals for those 49 CFR vessels shall not exceed 1 year. - (4) Perform verification of head and shell wall thickness periodically, on a case-by-case basis, considering the service fluid, operational environment, and projected service life. In no case shall the verification interval exceed 20 years. NOTE: Cryogenic (jacketed) vessels and other insulated storage vessels are exempt from the visual examination requirements, provided the pressure retaining boundary is protected from corrosion and leakage is not indicated. b. **Pressure Systems** - Perform visual examination of all components on a case-by-case basis, at an interval developed from NPG 1700.6A criteria, but in no case shall the interval exceed 5 years. - (2) Perform periodic verification of pipe and tube wall thickness, on a case-by-case basis, considering the service fluid, operating environment, and projected service life. In no case shall the verification interval exceed 20 years. - Maintain verification that relief valves, pressure gages, and flex hoses are in a periodic inspection or recall program. Frequency of inspection or recall is to be based on design and safety standards, codes, and severity of service. - (4) Verify system operating pressures, relief device settings, line sizes, and wall thickness, and component pressure ratings are in accordance with approved documentation. - (5) Verify that all components and piping and tubing are properly identified. Also verify from vendor drawings or data sheets that all components have been hydrostatically or pneumatically tested. - All system and vessel examination intervals specified above are the maximum C. allowed. When service and environmental conditions, age, and additional concerns arise during analysis and evaluation, a more frequent examination interval may be established. This could result in a shorter recertification interval than would be developed for a similar PV/S with no identified concerns. - d. All changes in service fluids, operating pressure or temperature, all repair records, and conditions found during inspections shall be included. The inspection record must show as a minimum, MAWP, the last date of inspection, and hydrostatic/pneumatic test pressure, and test date(s). - Flex hoses e. - (1) Permanently Installed Hoses - All permanently installed flex hoses that operate at 1.03 MPa (gage) [150 lb/in² (gage)] or higher pressure shall be visually inspected over their entire length annually, as a minimum, for damaged fittings, broken braid, kinks, flattened areas, or other evidence of degradation. - All permanently installed flex hoses used with toxic/lethal fluids, regardless of operating pressure, shall be externally, visually inspected over their entire length annually, as a minimum, for damaged fittings, broken braid, kinks, flattened areas, or other evidence of degradation. - All nonmetallic hoses used for N₂H₄, MMH or N₂O₄ service shall be internally, visually inspected for any indication of the hose liner blistering, after one-year cumulative exposure to any of these fluids. - (2) Temporary-Use Hoses - All temporary-use flex hoses used with toxic/lethal fluids, regardless of operating pressure, shall be inspected over their entire length prior to use. (b) All other temporary-use flex hoses that operate at 1.03 MPa (gage) [150 lb/in² (gage)] or higher pressure shall be externally, visually inspected over their entire length prior to use. (c) All nonmetallic hoses used for N_2H_4 , MMH, or N_2O_4 service shall be internally, visually inspected for any indication of hose liner blistering after one-year cumulative exposure to any of these fluids. ## 11.0 NONDESTRUCTIVE EXAMINATION (NDE) An NDE shall be performed to supplement the inspection of both pressure vessels and systems. - a. Although the total NDE required for each system and vessel shall be determined by analysis, the following are required for each PV/S: - (1) Visual examination of each vessel for evidence of damage, flaws, cracks, unacceptable welds, corrosion, excessive heat, etc., - (2) Visual examination of the system piping, supports, and components for evidence of damage, flaws, cracks, unacceptable welds, corrosion, excessive heat, etc., NOTE: If questionable areas are found during the Visual Examination, further examination by NDE techniques shall be performed using techniques that do not compromise vessel or system integrity. - (3) Ultrasonic Testing-Thickness (UT-THK) of the vessel to verify that current head and wall thickness meets or exceeds the design thickness. - b. In pressure systems containing identical vessels,
an NDE of a sample of the vessels most likely to experience a service-induced problem shall be allowed. ## 12.0 MARKING/IDENTIFICATION REQUIREMENTS Marking and labeling requirements shall conform to the applicable design specifications, codes, standards, and fabrication and installation drawings. ASME Code terminology shall continue to be used until metric units are incorporated into the ASME Code. Vessels and components shall be identified by unique identifiers (find numbers) that are traceable to the mechanical schematic drawing (refer to GP-435, Vol. 1, paragraphs 2.5.2 and 6.6.1). - a. Minimum Functional Requirements Ground-based or Ground Support Equipment (GSE) - (1) Pressure Vessels - (a) Manufacturer's Nameplate (Manufacturer nameplates vary with regards to type, size, location and contents but generally contain the following: MAWP or Design Pressure (D.P.), Temperature Range, Capacity, Material, Media, Model Number or Serial Number and other Information.) Nameplates must be accessible and legible. ## (b) The MAWP and Name of Service Fluid Must be displayed on the vessel in a conspicuous location, except as covered in Section 7.0 of this Attachment and herein. Where multiple vessels are grouped together to store the same fluid at the same pressure, only the most conspicuous vessel in the group need be labeled. The marking shall be legible at a distance of 16 meters (50 feet). ## (c) Maximum Operating Pressure (MOP) MOP designation use is optional. Utilization is generally reserved for those applications where the maximum operating pressure used with a given pressure vessel is lower than the vessel's capability or MAWP. When used, the MOP shall be displayed on the vessel in a conspicuous location. Where multiple vessels are grouped together to store the same fluid at the same pressure, only the most conspicuous vessel in the group need be labeled. The marking, which may be somewhat larger than that for the MAWP, shall be legible at a distance of 16 meters (50 feet). ## (d) Find Number (Axxxxxx). The KSC-unique, alphanumeric identifier designated by stencil or corrosion-resistant, metal tag. May be grouped together on conspicuous signage in cases where vessels are banked together. (e) KSC PV/S Certification Program Nameplate. Each certified pressure vessel should have a corrosion-resistant plate, tag or stenciled sign permanently affixed as near as possible to the original manufacturer's name-plate, bearing the following information as a minimum: "KSC PV/S CERTIFICATION PROGRAM, CERTIFIED MAWP xxxx psig," and "CERTIFICATION DATE (Month and Year)." - (2) Panels - (a) Relief Valves Each relief valve shall be labeled or tagged to include the following: - 1. Set pressure in psig - 2. Date (month/year) valve was set or calibrated - Find Number - 4. Next due date (month/year) - 5. Manufacturer's nameplate NOTE: The pressure shown shall be the nominal pressure, exclusive of any tolerance, specified by appropriate engineering directive. Also, each relief valve will have an adjoining or associated Find Number on panel front (plate)/back (ink-stamp or tag). ### (b) **Pressure Gages** Each pressure gage that is periodically recalibrated shall have a calibration sticker affixed to the gage dial or cover/lens to include the following: - 1. Calibration date (month/year) - 2. Next due date (month year) - 3. Unique ID Number Also, each pressure gage will have an adjoining or associated Find Number on panel front (plate)/back (ink-stamp or tag). #### (c) **Transducers** Each transducer that is periodically recalibrated shall have a calibration sticker affixed to the body of the instrument or to an attached corrosion resistant tag which will include the following: - 1. Calibration date (month/year) - 2. Next due date (month/year) - 3. Unique ID Number Also, each transducer will have an adjoining or associated Find Number on panel front (plate)/back (ink-stamping or tag). #### (d) Panel Tubing Identification tag is required on each tube assembly letter with: - 1. Tube size - 2. Test Pressure - 3. Test Date - 4. Other miscellaneous information required by controlling system design specification ### Miscellaneous Components (e) Miscellaneous components (hand valves, check valves, regulators, filters, etc.) shall, as a minimum, be marked/identified with a Find Number. This marking will consist of, as a minimum, an adjoining or associated Find Number on panel front (plate)/back (ink-stamping or tag). ### (f) Panel Face Marking Each panel front (face) shall be marked with a one-line schematic representing commodity flow, panel inlets and outlets, schematic symbols, respective component Find Numbers, etc. Also, each panel front will have signage indicating such descriptive information as panel title. drawing number, program model number, etc as required by respective design specification. (3) Interconnecting Piping, Tubing and In-line Components Interconnecting piping and tubing shall be marked to indicate commodity, direction of flow, and nominal operating pressure in accordance with respective design specifications. In-line components shall, as a minimum, be marked or identified with a Find Number. If these components are pressure gages or transducers, the marking requirements of 2-b and 2-c of this Section, apply. (4) Flex Hoses All flex hose assemblies in use shall have corrosion-resistant metal tag(s) attached that bears the following information as a minimum: - (a) Date (month and year) of Fabrication - (b) Hydrostatic Test Date (month and year) - (c) Current, Periodic Visual Inspection and Next Due Date (month and year) - (d) Manufacturer's Name, Part Number and/or KSC Part Number - (e) Rated Working Pressure - (f) Serial Number (S/N) - (g) Service Media (Only for dedicated fluid hoses in support of any oxygen, hydrocarbon or hypergolic liquid system.) - (h) For Type I hoses, a Find Number All new or refurbished flex hose assemblies in inventory, under the control of a Logistics organization, shall have corrosion-resistant metal tag(s) attached that bears the following information as a minimum: - (a) Date (month and year) of Fabrication - (b) Hydrostatic Test Date (month and year) - (c) Manufacturer's Name, Part Number and/or KSC Part Number - (d) Rated Working Pressure - (e) Serial Number (S/N) NOTE: Commercial off-the-shelf equipment which contains flex hoses, and is approved by Underwriter's Laboratory (UL), National Institute for Occupational Safety and Health (NIOSH), or other safety certifying organizations, shall be exempt from these requirements. b. Minimum Functional Requirements - Portable and Mobile Pressure Systems KSC owned portable and mobile pressure vessels and systems shall be marked in accordance with KSC Drawing 81K04331, "Specification for Marking of Propellant Portable Containers," or in accordance with KSC Drawing 81K00643, "Specification for Marking of Mobile GSE." Other portable and mobile pressure systems shall be marked in accordance with 49 CFR requirements for hazardous materials ### 13.0 **ENGINEERING ANALYSIS** The program/project or directorate organization shall perform an engineering analysis at recertification to determine the disposition of the system or vessel(s). Possible choices for disposition include: - Certifying the system or vessel(s) for continued operation. a. - b. Certifying the system or vessel(s) for continued operation with specific restrictions imposed. - C. Re-rating or de-rating the system or vessel(s) for operation at a new pressure or temperature. - d. Replacing components or portions of the system, after which it may be certified for continued operation. - e. Removing the system or vessel(s) from service. ### 14.0 REPAIRS, ALTERATIONS, OR MODIFICATIONS - System Modifications or Repairs a. - All modifications, alterations, or repairs to certified systems shall comply with the National Board of Inspection, ANSI/NB-23 and KSC Design Standards, KSC-STD-Z-0005 through KSC-STD-Z-0009. - (2) The program/project or directorate organization's designated PV/S Program representative shall review all system modifications, before work is initiated. - (3) System files and reports shall be updated to reflect modifications, alterations, and repairs. - b. **Vessel Repairs or Alterations** - All alterations or repairs shall conform to the ASME Boiler and Pressure Vessel Code or other applicable code(s). An R-stamp shall be required for ASME Code-stamped vessels, and R-stamp equivalent documentation shall be required for noncoded vessels. Alterations or repairs to vessels built to Department of Transportation (DOT) codes and regulations shall conform to requirements applicable to the specific vessel specification. - The program/project or directorate organization's designated PV/S Program representative shall review all vessel alterations or repairs before work is initiated. - Nondestructive Examination (NDE) C. - (1) Modified systems shall be examined in accordance with the requirements of ASME B31.3, to verify the integrity of the modification. This examination shall include a pressure test per ASME B31.3. Only the modified part of the system shall require examination. - Altered pressure vessels shall be pressure tested per the requirements of ANSI/NB-23. Repaired pressure vessels may require a pressure test per ANSI/NB-23. See ANSI/NB-23, for pressure test criteria. - NDE for altered or repaired vessels shall be performed in accordance with ANSI/NB-(3) 23. - Alterations or repairs to vessels in lethal fluid service shall require all new butt welds to be radiographed in accordance with the requirements of ASME Code, Section VIII, Division 1, Paragraph UW-2 (a). ### 15.0 **INACTIVE AND UNSAFE VESSELS AND SYSTEMS** - a. Inactive Vessels/Systems - For each inactive vessel/system, the following information shall be submitted to the (1) PSM within 90 days after removal from service: - Facility location (number and name) obtained from (a) KSC-GP-14-2. - (b) Service fluid. - Pressure
Vessel/System drawing Identification (ID) number. (c) - (d) Manufacturer's name and date of manufacture. - Vessel's Serial Numbers (S/N). (e) - (f) MAWP or design pressure. - Facility O&M organization. (g) - (h) Vessel capacity. - (i) Code stamping. - Certification date. (i) - (k) Certification report number. - (l) Associated system baseline number. - Normal operating pressure, temperature, and pressure cycle. (m) - (2) A copy of this information shall be maintained in the respective vessel or system documentation file. - (3) Inactive vessels and systems shall be stenciled or otherwise labeled ## "INACTIVE-CERTIFY BEFORE REUSE." - b. Unsafe Vessels or Systems - (1) When a vessel/system is determined to be unsafe for further use, it shall be deactivated and prepared for disposal, in accordance with KSC KNPR (KHB 4000.1). - (2) Each unsafe vessel/system shall be physically disabled and shall be stenciled: ## "NOT USABLE - FOR DISPOSAL ONLY." - (3) A report shall be submitted to the PSM describing the disposal procedure. The procedure should address: - (a) Disposal method (scrapping, transfer to Government surplus, or abandon in place). - (b) Method for flushing the vessel or system of any toxic or hazardous substance. - (c) Guidelines for handling hazardous or toxic residuals. - (d) Vessel manufacturer's nameplate data, system baseline number, drawing number, or other identifying nomenclature. ## 16.0 CERTIFICATION/RECERTIFICATION DEFINITIONS AND REQUIREMENTS - a. Certification: - (1) Certification is the documented status that qualifies a vessel or system to operate in the service for which it is intended. - (2) The Certification Report is a collection of official documentation developed through nondestructive tests, inspections, analysis, and examinations that qualifies a pressurized vessel or system to operate at its design pressure. The certification report shall be required for each system or vessel and shall describe the steps involved in the certification along with rationale for certification. This report shall be revised as necessary to maintain an up to date record of certification activities. - (3) Copies of all certification reports shall be provided to the PSM for review and retention. Each certification report (including revisions) shall be approved by the organization PV/S Certification Program representative and shall be issued through appropriate DRA. - (4) The following information, as a minimum, shall be required in the certification report: - (a) System Description: Identification of the major components and a brief description of the operation and configuration of the system. Photographs and drawings may be used as required. System endpoints or boundaries shall be clearly defined. - (b) Documentation Summary: Description of the documentation available, identifying nomenclature, its location, accuracy, and identification of significant discrepancies. - (c) Design Verification Results: Description of the system and vessel design verification effort, identifying applicable codes and standards, input data, and significant findings. - (d) Engineering Work Packages: Description of documentation issued for inspection and tests and description of any repairs and modifications required for PV/S certification. - (e) Inspection and Test Results: Summary of the tests and nondestructive examinations performed, including visual inspections. Unacceptable results should be described in detail. - (f) Engineering Analysis: Summary of all significant engineering analysis Performed, including results of calculations, analysis of inspection results, and special engineering analysis performed. - (g) Certification Summary: Complete summary of the Pressure Vessels/Systems certification effort and final disposition of the system and components. - (h) ISI Requirements: The 20-year ISI plan, including inspections and tests to be performed, and the frequency, for the system and individual components. ISI guidelines are established in NPG 1700.6A. A discussion of the purpose and extent of inspections identified shall also be provided. - (i) Certification Certificate: Certificate, which indicates that system and vessel(s) comply with this Attachment, except for non-safety- related discrepancies identified in the certification report. PV/S shall not be considered certified until all safety related hardware discrepancies are corrected. ## b. Recertification: - (1) Recertification is the procedure by which previously certified vessels or systems are recertified for use at a designated pressure through appropriate tests, inspections, examinations, and documentation. Reference NPG 1700.6A for full details concerning the recertification process for in service pressure vessels and systems. - (2) Figure E–4 describes the logical recertification procedure for ISI equipment. - (3) Recertification Tests, Inspections and Examinations or Nondestructive Evaluation (NDE) will consist of, but not limited to the following: - (a) Visual External (VE) examination of vessel(s) and system component(s) surfaces for subsequent documentation and correction of the following general conditions: - Corrosion - 2. Cracking - 3. **Bulges or Blisters** - 4. Leakage - 5. **Excessive Vibration** - 6. Abnormal Noise - 7. Overheating - 8. Vacuum Jacket Line Frost - 9. Loose Fasteners, Supports, or Misc. Parts VE requirement may be modified or waived if vessel/system component Preventive Maintenance (PM) is current and there are no long-standing open discrepant conditions from previous PM VE examinations. Ultrasonic (UT) measurements of vessel head, wall or End-bells for material thickness determination and subsequent engineering evaluation. UT requirements may be modified or waived in the case of multiple vessel clusters of banks where a random sample percentage of the vessels in a given group will be selected for UT measurement and subsequent evaluation. #### 17.0 PRESSURE VESSELS/SYSTEMS DATABASE a. General The KSC Pressure Systems Manager shall maintain an inventory and certification status database of all PV/S at KSC. - b. **Data Requirements** - Each program/project or directorate organization having responsibility for one or more pressure systems or vessels that are covered by this Attachment shall provide the information. as shown in Figures E-4, and E-5, and E-6 to the PSM. Other formats may be acceptable provided all information in the figures is provided. - Each program/project or directorate organization shall submit updated data, at least (2) quarterly. - Any changes shall be easily identifiable. (3) - (4) This data may also be provided electronically. TYPE E: DOUBLE EYE GRIP - USED WHERE FASTENING IS MADE WITH EYE BOLTS OR SIMILAR ANCHOR TERMINATIONS. TYPE A: SINGLE EYE GRIP - USED WHERE FASTENING MUST BE MADE FROM FROM ONE ANCHOR POINT. TYPE U: UNIVERSAL BALE GRIP - USED TO FASTEN AROUND A STRUCTURE OR CLOSED EYE. ### MOTES: - 1. SAFETY APPROVED FOR ALL HOSES SIZES AND PRESSURE RATINGS. - 2. RESTRAINTS WITH BRONZE COMPONENTS SHALL NOT BE USED WITHIN 25 FEET OF HYPERGOLS OR AMMONIA. # FIGURE E-1 TYPE E, A, U, Y AND F HOSE CONTAINMENT GRIPS TYPE T: CONTAINMENT GRIP INSTALLED ACROSS HOSE SPLICE OR UNION JOINING HOSES TOGHETHER. ### NOTES: - 1. SAFETY APPROVED FOR ALL HOSE SIZE AND PRESSURE RATINGS. - 2. RESTRAINTS WITH COMPONENTS SHALL NOT BE USED WITHIN 25 FEET OF HYPERGOLS OR AMMONIA. # FIGURE E-2 TYPE T HOSE CONTAINMENT GRIP | | | | (\$ | SAMPLE |) | | | | | |-----------------------------|------------------------------|---|----------|----------------|------------------------------|---------------------------|-----------|----|--| | | | INSERVI | CE INSPE | CTION (I | SI) D | ATA SHEET | , | | | | System | | | | | Baseline No | | | | | | Certification Report No | | | | Release Date// | | | | | | | | | ISI Requirements Test Method Required at Time Intervals (Years) | | | | | | | | | | | Initial | 1 | 2 | | 5 | 10 | 20 | | | Vessels | ; | | | | | | | | | | Vessel Supports | | | | | | | | | | | Piping System & Components | | | | | | | | | | | Piping Supports | | | | | | | | | | | Relief Valves | | | | | | | | | | | Pressure Gages | | | | | | | | | | | Flexible Hoses | | | | | | | | | | | INSPECTION AND TEST METHODS | | | | | | | | | | | AET | - Acoustic En | oustic Emission Test | | С | - C | - Calibration | | | | | UT-
THK | - Ultrasonic Thickness Meas. | | PT | - L | - Liquid Dye Penetrant Exam. | | | | | | VE | - External Visual Exam. | | | MT | - N | - Magnetic Particle Exam. | | | | | VI | - Internal Visual Exam. | | | RS | - R | - Recall System | | | | | UT-
VOL | - Ultrasonic Volumetric Test | | RT | - R | - Radiography | | | | | | HPT | - Hydrostatic Pressure Test | | | R | - R | Recertification | Required. | | | | PPT | - Pneumatic I | Pressure Test | | | | | | | | # FIGURE E-3 INSERVICE INSPECTION REQUIREMENTS FIGURE E-4 RECERTIFICATION PROCEDURE FOR INSERVICE EQUIPMENT | (SAMPLE) | | | | | | | | | |--|---------------------------------------|--|--|--|--|--|--|--| | SYSTEM DATA SHEET | | | | | | | | | | Cert. Report No | Rev Rev. Date// Needs Rev? (Y/N) | | | | | | | | | System Description | | | | | | | | | | Location | | | | | | | | | | No. of Identical Systems in this Cert | Facility Number(s) | | | | | | | | | Baseline No. (B/L) | Station Set (SS) No | | | | | | | | | PMN (s), | , | | | | | | | | | ······································ | | | | | | | | | | , ,, | · · · · · · · · · · · · · · · · · · · | | | | | | | | | Orig. Cert. Report Date// | System Status - Active/Inactive (A/I) | | | | | | | | | System Certified Date// | Certifying Organization | | | | | | | | | Cert. Expiration Date// | O & M Organization | | | | | | | | | Service Fluid (s) | ISI Requirements Defined? (Y/N) | | | | | | | | | System Design Pressure(N | лРа or lb/in ² gage) | | | | | | | | | OMO Descripe Neverbooks |
Number of Vessels in System | Number of Relief Devices in System | | | | | | | | | Number of Gages in System | Number of Flex. Hoses in System | | | | | | | | | | | | | | | | | | | Last Walkdown No. | Last Walkdown Date// | | | | | | | | | COMMENTS: | - | | | | | | | | | | - | | | | | | | | | FIGURE E-5, SYSTEM DATA REQUIREMENTS | (SAMPLE) | | | | | | | | | |--|-----------------------------------|--|--|--|--|--|--|--| | VESSEL DATA SHEET | | | | | | | | | | System Cert. Report No Da | ate | | | | | | | | | Vessel Find No PN (or other unique designator) | PMN | | | | | | | | | Vessel Description | | | | | | | | | | KSC Instl. Dwg. No Mfgr. Name | | | | | | | | | | Mfgr. Dwg. No Mfgr. S/N | | | | | | | | | | ASME Code Stamp - Yes/No (Y/N) Code Section/Di Year Built Vessel Flu | visionid Mediai | | | | | | | | | Vessel Status-Active/Inactive/Scrapped/Excessed (A/I/S/X) | | | | | | | | | | Vessel Water Volume(m ³ or ft ³) | | | | | | | | | | Certified Vessel MAWP(MPa or lb/in ² gage) at | (°C or °F) | | | | | | | | | Original MAWP(MPa or lb/in ² gage) at _ | (°C or °F) | | | | | | | | | Min. Design Metal Temp (^O C or ^O F) at | _(MPa or lb/in ² gage) | | | | | | | | | COMMENTS: | | | | | | | | | | | | | | | | | | | # FIGURE E-6 VESSEL DATA REQUIREMENTS ## APPENDIX A TO ATTACHMENT E ## ITEMS EXCLUDED FROM CERTIFICATION ### 1.0 **GENERAL** The items listed below shall be excluded from certification under this KNPR. Their Inservice Inspections (ISIs) are covered by national consensus standards, other standards or guides, or they do not present sufficient hazard to require other than normal routine maintenance because of their low potential for failure, low risk, or low stored energy: - a. Fire Extinguishers: Covered by 29 CFR Part 1910, Subpart L: - (1) Portable. - (2) Standpipe and hose systems. - (3) Automatic sprinkler systems. - (4) Fixed dry chemical extinguishing systems. - Carbon dioxide extinguishing systems. (5) - (6) Halogenated extinguishing agent systems. - Heating Boilers: ASME Code, Section VI. a. - b. Power Boilers: ASME Code, Section VII. - Nuclear Reactor Coolant Systems: ASME Code, Sections III and XI. C. - Self-contained Air Breathing Equipment or other Breathing Apparatus: Covered by 29 CFR Section 1910.134. - Compressed Gas Cylinders are covered by 49 CFR Part 180, Subpart C and 49 CFT e. Part 178. - Mobile Equipment for Gases and Liquids: Covered by: 49 CFR, Subtitle B, Chapter 1, Subchapter C. - g. Heating, Ventilation, Air Conditioning, and Refrigeration Systems: Covered by Manufacturer's standard installation, operation, and maintenance instructions. - Pressure Gages: Covered by ANSI/ASME B40.1 (for pressure systems operating at 1.03 MPa (gage) [150 lb/in² (gage)] or less. Water system pressure gages are exempt when operated at 1.7 MPa (gage) [250 lb/in² (gage)] or less. Instrumentation: Pressure transducers, pressure switches, pressure transmitters, etc., for pressure systems operating at 1.03 MPa (gage) [150 lb/in² (gage)] or less. Water system instrumentation is exempt when operating at 1.7 MPa (gage) [250 lb/in² (gage)] or less. - k. Flex hoses used for calibration, test, checkout, or other short-term (not to exceed 6 months) purposes. - Payload-Associated GSE: Covered by Attachment E, Section 5.0. This GSE, which is used to process or service payloads, is provided by organizations other than KSC and does not become a permanent part of any KSC ground system. - m. Portable regulation panels, control panels, or other GSE, which are not, a part of any configured system and are used for short term (not to exceed 6 months) applications. All pressure gages and relief valves in such equipment shall be included in a recall system. - The certification program does not apply to pressure vessels or pressurized systems of a temporary nature used to support construction or system modification activities. ### 2.0 OTHER PRESSURE VESSELS AND SYSTEMS Some PV/S fall into a utility category and present a minimum potential hazard. Such vessels and systems may be excluded based on a review of potential hazards. Guidelines for such exclusions shall be as follows: - Exclusion limits for nonhazardous gas systems: a. - Unfired pressure vessels with appropriate overpressure relief protection set no higher than 1.03 MPa (gage) [150 lb/in² (gage)], provided the water volume is less than 0.85m³ (30ft³). - Piping and components with appropriate overpressure relief protection set no higher than 1.03 MPa (gage) [150 lb/in² (gage)]. - b. Exclusion limits for nonhazardous or nonlethal liquid systems other than water: - Vessels and storage tanks of any size provided they are vented to atmosphere or are (1) maintained at atmospheric pressure at all time. - (2) Piping and components with appropriate overpressure relief protection set no higher than 1.03 MPa (gage) [150 lb/in² (gage)]. - C. Exclusion limits for water systems: - (1) Systems used for storage and distribution of potable water. - Piping and components, including hydro pneumatic tanks of any size, with appropriate overpressure relief protection set no higher than 1.7 MPa (gage) [250 lb/in² (gage)]. - (3) Exclusion limits for vacuum systems: These exclusion limits are based on performance of normal preventive and corrective maintenance: - Vacuum vessels of less than 2.83 m³ (100 ft³) volume. (a) - Piping, expansion joints, and valves (except relief devices). (b) - (4) Exclusion limits for hydraulic systems: - Most hydraulic systems designed in accordance with national consensus standards are (a) excluded from this program. - Hydraulic systems that support launch vehicle functions, fixed and mobile launch tower operations, or hydraulic systems that support the transportation of launch vehicles or their payloads, or other hydraulic systems used for processing flight hardware, are not excluded and must be certified in accordance with the requirements of this Attachment. - Exclusion limits for natural gas and Liquefied Propane (LP): (5) - Public utility-owned natural gas supply and distribution systems. (a) - LP gas storage and distribution systems utilizing 49 CFR storage vessels and used for (b) utility/domestic applications. ASME Code stamped vessels shall not be exempt. ## APPENDIX B TO ATTACHMENT E SAFETY REQUIREMENTS FOR DESIGN. TEST. AND GROUND PROCESSING OF FLIGHT GRAPHITE/EPOXY (GR/EP) COMPOSITE OVER WRAPPED PRESSURE VESSELS (COPVs) AT THE KENNEDY SPACE CENTER (KSC), CAPE CANAVERAL AIR FORCE STATION (CCAFS), AND THE VANDENBERG AIR FORCE BASE (VAFB) (This Appendix is an agreement between NASA/KSC and the Air Force dated November 23, 1993) Spacecraft, Missile, or launch vehicle systems containing Gr/Ep COPVs to be processed through KSC, CCAFS or VAFB facilities shall, as a minimum, meet the requirements of this Appendix. ### 1.0 **DESIGN REQUIREMENTS** - The Gr/Ep COPVs shall be in compliance with MIL-STD-1522A. a. - b. Gr/Ep COPVs with a liner other than metal may only be designed by the ASME Code Section 10. Gr/Ep COPVs qualified to DOT or ASME standards are exempt from these requirements. ### 2.0 **TEST REQUIREMENTS** - Those Gr/Ep COPVs with metal liners shall demonstrate their failure mode (LBB/Brittle Fracture) by test or similarity. - The test vessel demonstration shall include the overwrap and a preflawed liner (flaw size to be determined by fracture mechanics analysis liner material). Cyclic testing (for demonstration of failure mode) shall be performed such that failure occurs as close to MEOP as possible. Fluid for cyclic testing may be gas or liquid. - (2) Gr/Ep COPVs with metal liners evaluated by similarity (e.g., comparison with a vessel that has already been tested and documented having similar fiber, epoxy, matrix design, and geometry) may not require a demonstration test provided it is approved by the appropriate approval authority. - Prior to the first pressurization of the Gr/Ep COPV at KSC, CCAFS, or VAFB, an inspection of the vessel overwrap for visible damage shall be performed by a trained inspector. If this inspection is not possible at the launch base (i.e., not accessible) then it shall be conducted the last time the vessel is accessible for inspection. - After arrival at the prelaunch processing location, but prior to any propellant loading or pressurization Gr/Ep COPVs shall be pressure tested to 1.1 times ground maximum operating pressure. The minimum time for holding this pressure shall be 10 minutes. Gr/Ep COPVs shall be remotely pressurized or a blast shield shall be used to protect personnel. d. Nondestructive Inspection (NDI) techniques for Gr/Ep overwrap are, at this time, not well defined or understood. There appears to be no quantifiable enhancement of personnel safety by requiring NDI in addition to remote or blast shield protected pressurization procedures. However, NDI of Gr/Ep overwrap is recommended to better understand mission assurance and resource protection risks. ### 3.0 **GROUND PROCESSING REQUIREMENTS** - If Gr/Ep COPVs are to be pressurized at the KSC, CCAFS, or VAFB to pressures a. greater than one third of the Gr/Ep COPVs design burst pressure the pressurization shall be performed remotely or a blast shield shall be used to protect personnel. If the vessel is to remain pressurized, personnel access will not be permitted for at least 10 minutes after pressurization is completed. - Personnel limits for each operation on or near the Gr/Ep COPV/Spacecraft shall be established to minimize personnel exposure to the pressurized tank. - The transport of pressurized COPVs shall be along routes that minimize exposure to personnel and facilities with escort during designated time periods. - During manufacture, handling, transportation, assembly, and integration of Gr/Ep COPVs into the user's system(s), Gr/Ep COPVs shall be protected from impact damage. - e. Except for the pressure test required by
Section 2.0 of this Appendix, pressure testing of systems with Gr/Ep COPVs shall not exceed the manufacturers' MEOP pressure limit without the manufacturers' and appropriate approval authority agreement. - Users shall develop Emergency Response Plans (ERPs) that include contingency Safing f. and backout plans for Gr/Ep COPVs that will consider leaks, impacts, and exposure to incompatible chemical agents. If implemented, a real-time assessment shall be accomplished and contingency operations taken as required. The appropriate approval authority as specified in Section 7.0 of this Appendix shall approve the ERP. ### 4.0 **COMPATIBILITY REQUIREMENTS** - Gr/Ep COPVs that contain hypergolic propellants shall comply with the following compatibility and ground processing requirements when personnel are at risk. - Single liner Gr/Ep COPVs that contain propellants at flight pressure shall meet the (1) following requirements: - Testing data shall be provided showing that the Gr/Ep overwrap is compatible with the propellant in terms of strength degradation, flammability and ignition/ combustion. - Hazardous vapor detectors shall be used during loading. In addition, the atmosphere in the tank vicinity shall be checked, at a minimum, every eight hours thereafter. More frequent checks may be required if the compatibility test results so indicate. - Single liner Gr/Ep COPVs that contain propellants at blanket pressure shall meet the (2) following requirements: - Testing data shall be provided showing that the Gr/Ep overwrap is compatible with the (a) propellant in terms of flammability, and ignition/combustion. - Hazardous Vapor Detectors shall be used during loading. In addition, the atmosphere in (b) the tank vicinity shall be checked, at a minimum, every eight hours thereafter. More frequent checks may be required if the compatibility test results so indicate. - Double liner Gr/Ep COPVs (that have been demonstrated to be single fault tolerant) (3)which contain propellants pressurized up to flight pressure will only require the use of hazardous vapor detectors. Hazardous vapor detectors shall be used during loading, in addition, the atmosphere in the tank vicinity shall be checked, at a minimum, every 8 hours thereafter. - Gr/Ep COPVs that contain inert pressurants in close proximity to propellant tanks(s) shall comply with the following compatibility and ground processing requirements when personnel are at risk. Testing data shall be provided showing the Gr/Ep overwrap is compatible with the propellant in terms of strength degradation, flammability, and ignition/combustion. If this data is not available the following actions must be accomplished. - (1) Verify that the Gr/Ep COPV is not in a credible "drip zone" for propellant liquids during ground processing. - (2) If the Gr/Ep COPV is in a credible "drip zone," it shall be protected with protective coating and/or covers and/or splash shields to guard against contact with potentially incompatible liquids. - (3) Verify that hazardous vapor detectors will be used to monitor the propellant tanks. ### 5.0 **DATA REQUIREMENTS** - The data required verifying compliance of Gr/Ep COPVs with the requirements imposed by this Appendix can be submitted to the appropriate approval authority with the specific program's safety data submittal. However, it is recommended that the data be submitted as soon as available in order to resolve potential problems during the conceptual phase rather than the design/build phase. - b. The following data shall be submitted: - Ground processing plans and procedures for the launch sites including all operations (1) and activities directly involving and incidental to the Gr/Ep COPV. - (2) A risk assessment of the Gr/Ep COPV during ground processing. - (3) Description and analysis of the protection system(s) used to prevent impact damage. - Description of the protective coating/covers or splash shields used to guard against (4) contact with incompatible propellants (if used). - Summary of design, analysis, and test data that validates the design burst pressure. failure mode (LBB or Brittle Fracture) and overwrap compatibility with propellants. - (6) History of Pressure cycles along with the design limitations (rate, magnitude, and duration). - Data to verify design limits have not been exceeded for specified storage and transport (7) environmental conditions. - (8) Test and inspection results. (Acceptance and proof tests) - (9)Reports/inspections that identified abnormal conditions such as impacts, chemical exposure excessive environmental loads vibration acceleration, temperature, etc. - (10)The Emergency Response Plan (Section 2.0 of this Appendix) - The Gr/Ep COPV manufacturer shall maintain inspection data per MIL-STD 1522A. C. Section 4.6.3. This data shall be kept on file at the Fabricator's place of business or at a safe depository acceptable to the Approval Authority and available to the Approval Authority for at least 5 years. When fabrication of vessels over an indefinite period of time are involved, the Fabricator's Design Report on each specific design shall be kept on file for at least 5 years after use of such vessels has ceased. - A record shall be kept on the pedigree of each Gr/Ep COPV. The record shall contain, d. as a minimum, the data identified herein. This record shall be kept and updated as required by the Gr/Ep COPV owner. ### 6.0 **EXEMPTIONS/DEVIATIONS** Exemptions to these requirements may be granted only after submission of data and rationale that is acceptable to the appropriate approval authority. As a minimum, the data submitted shall clearly identify the safety issues regarding personnel, environment, facilities, flight hardware, schedule, and cost impacts. Approval of deviations shall be by the appropriate approval authority as specified in Section 7.0 of this Appendix. ### 7.0 **APPROVAL AUTHORITY** Approval of design, test, and ground processing of a spacecraft, missile, or launch vehicle systems containing Gr/Ep COPVs shall be given as follows: - For Space Shuttle payloads, LSP payloads, and NASA launch vehicle systems at KSC, the Director of Safety and Mission Assurance (S&MA). - For missiles, launch vehicles, and LSP payloads at CCAFS, the Chief of Safety, USAF, b. 45th SW. For missiles, launch vehicles, and LSP payloads at VAFB, the Chief of Safety, USAF, 30th SW. ### 8.0 APPROACHES FOR NONDESTRUCTIVE INVESTIGATION (NDI) OF GR/EP COPV **OVERWRAP** - MIL-STD-1522A paragraph 4.6.1 states: "An Inspection Master Plan shall be established prior to start of fabrication. The plan shall specify appropriate inspection points and inspection techniques for use throughout the program, beginning with material procurement and continuing through fabrication, assembly, acceptance proof test, operation, and refurbishment, as appropriate. In establishing inspection point and inspection techniques, consideration shall be given to the material characteristics, fabrication process, design concept, structural configuration and accessibility for inspection." The interim Gr/Ep COPV recommends an inspection prior to qualification testing. This NDI will establish a baseline inspection for each Gr/Ep COPV design that will be used as a comparison with future NDI. This NDI will become a part of the "Inspection Master Plan." - b. The most appropriate NDI techniques for detecting commonly encountered flaw types should be used for all pressure vessels (see MIL-STD-1522A, paragraph 4.6.2). The interim Gr/Ep COPV recommends the performance of NDI using shearography, thermography or other techniques found to be capable of detecting impact damage and manufacturing type defects (such as indentation, cracks, porosity, air bubbles, exposed fibers, lack of resin, excess resin, broken or separated fibers, thin areas, wrinkling, uniformity of seal surface, and delamination). - NDI of the overwrap before and after acceptance testing may establish vessel pedigree C. and reduce the number of rejectable vessels when compared with the pregualification NDI results. This comparison will allow a qualitative evaluation of the integrity of the vessel. NDI results may be of assistance in determining if the Gr/Ep COPV under review is "out of family" with other vessels of the same design. MIL-STD 1522A (paragraph 4.6.2) states: "The flaw detection capability of each selected NDI technique shall be based on past experience on similar hardware. Where this experience is not available or is not sufficiently extensive to provide reliable results, the capability, under production or operational inspection conditions, shall be determined experimentally and demonstrated by tests approved by the procuring agency on representative material product form, thickness, and design configuration." The flaw may be characterized in terms of indication depth, surface area, or other applicable dimensions. It should be demonstrated by test that the vessel will safely withstand the expected service conditions with the kinds of indications and/or defects that are present/found. The demonstration test should consist of subjecting one or more prototype vessels to destructive tests. - Inspection data in the form of flaw histories should be maintained throughout the life of the pressure vessel (see MIL-STD-1522A, paragraph 4.6.3). It is expected that the data will also include: - (1) Design specification. - (2) Design drawings. - (3) Design calculations. - (4) Material manufacturers specification sheets for resin, fiber reinforcement, promoters, catalyst, and other components used in laminate construction. - (5) Properly certified documentation for parts of the vessel fabricated by other Fabricators. - (6) The Procedure Specification, giving the fabrication procedures used to fabricate both the prototype vessel(s) and all production vessels. - Qualification Test Report. (7) - (8) Quality Control Test Report. - (9) Production Test Report. This data should be periodically reviewed and assessed to
evaluate trends and anomalies associated with the inspection procedures, equipment and personnel, material characteristics, fabrication processes, design concept, and structural configuration. The result of this assessment can form the basis of any required corrective action. - In the case of suspect vessels, a Material Review Board (MRB) can be created to evaluate the NDI results and disposition. The MRB should consist of the procuring agency, the Gr/Ep COPV manufacturer and the appropriate launch or test range approval authority. The MRB should utilize NDI comparison, past experience, additional NDI, and other qualitative and quantitative methods, as they become available to determine the acceptability of a suspect vessel. Data collected from the MRB process should be recorded per the requirements of Section 5.0 of this Appendix for future reference. Vessels determined to be unfit for continued use shall be rejected. The rejected vessels may be returned to the vessel user for scrap or testing (at the user's discretion) to determine the burst strength of the vessel for future reference and further definition of the database. - f. A visual inspection prior to installation in the spacecraft of launch vehicle at the time of last complete unobstructed access will screen for impact damage. This visual inspection may take place at the launch site or at the spacecraft/launch vehicle manufacturing facility depending on the access availability of the vessel. All visible impact damage indication should be reported to MRB for disposition. ## ATTACHMENT F ## KSC SUPPLEMENT TO NSS 1740.12. NASA SAFETY STANDARD FOR EXPLOSIVES. PROPELLANTS. AND PYROTECHNICS ### 1.0 **HUMIDITY REQUIREMENTS** Relative Humidity (RH) in the operational area shall be determined and recorded prior to the start and every 4 hours during operations involving open grain, open flammable/ combustible fluid systems, and Category A Electroexplosive Devices (EEDs) [when the Faraday cap is removed or firing circuits to EEDs are exposed]. - At or below 50 percent RH: a. - (1) Bonding, grounding, nonconductive materials, and personnel grounding devices (refer to Attachment D) shall be verified at less than 350 volts potential. - (2) Electrostatic scanning, not to exceed 1-hour intervals, shall be performed during the operation and at any time additional personnel, equipment, or hardware are introduced into the immediate area, the RH goes lower, or the handling of nonconductive materials is required. - b. At or below 30 percent RH: - (1) Operations involving open grain (except Solid Rocket Booster [SRB] segments), open flammable/combustible fluid systems, and Category A EEDs (with Faraday caps removed or firing circuits exposed) shall not be permitted. - (2) All operations where Orbiter Docking System (ODS) pyro devices are electrically disconnected, or exposed for testing shall not be permitted. - (3) Testing (e.g., resistance checks) of firing circuits connected to pyro devices shall not be permitted. - SRB segment processing between 30 percent and 10 percent RH shall use the following C. requirements: - Electrostatic scanning shall be accomplished at 10-minute intervals if the propellant is exposed and 30-minute intervals if the propellant is covered. - Operations shall not continue on segments with propellant exposed if a potential of 350 (2) volts or greater is measured on the segment case, propellant, or equipment and personnel who are within 5 feet of open grain. - (3) When the segment has the end rings with shipping covers installed, the following shall apply: - (a) Operations shall stop when electrostatic scan readings are measured above one kV. Processing shall not continue until the electrostatic scan indicates less than 1 kV. - When electrostatic scan readings on the case (propellant covered) are measured above 4 (b) kV, Safety shall be notified and all personnel shall be evacuated at least 500 feet (radius) from the processing area. Reentry into the operations area shall only be by personnel designated to perform electrostatic scans. - (4) SRB Segment processing shall not be permitted below 10 percent RH. ### 2.0 **EXPLOSIVES REQUIREMENTS** General Requirements a. The following general requirements shall be applicable to all activities involving explosives: - (1) EEDs shall be classified as Category A or Category B. - Restrictions for Category B EEDs shall be developed and incorporated into appropriate (2) Technical Operating Procedures (TOPs). - All explosive materials used at KSC shall be delivered, stored, installed, inspected, and (3) tested only in approved areas/facilities. - Explosives shall be under the control of the explosive storage area supervisor until delivery to the requesting organization. - All electrical connectors on equipment entering the Solid Rocket Motor (SRM) bore shall be sealed and potted. - Only Factory Mutual (FM)-, Underwriters Laboratory (UL)-, or Bureau of Mines-(6) approved, explosion-proof flashlights/lanterns shall be permitted in explosives controlled areas. - b. Explosives Test Equipment (ETE) - The appropriate program/project or directorate S&MA organization shall approve ETE. (2) The submitting organization shall provide the following data: - (a) Model number - Mechanical/electrical engineering drawings and specifications (b) - System safety analysis (c) - (2) A valid calibration seal shall be maintained on all approved ETE. - ETE approved by the 30th or 45th Space Wing (SW) for use in a joint Air Force/NASA jurisdiction facility does not require a separate NASA approval. - (4) Appendix A to this Attachment contains the list of currently approved ETE. - Transportation and Handling C. - (1) Safety chains or other types of especially designed breakaway control safety features shall be required between towing vehicle and trailer(s) when pintle or lunette fasteners are used. - (2) Explosives delivered to the operation site shall be only that required for the task. - (3) Explosives shall remain in the shipping/ transportation containers until needed. - Explosives delivery to a staged area for all explosives operations, including SRM segments, shall be scheduled as late as possible prior to the start of the operation. - If the explosives operation is delayed prior to the scheduled start time, the explosives delivery shall be cancelled and rescheduled accordingly. - (b) If the explosives operation is delayed after explosive delivery and is expected to be delayed more than one shift, the explosives shall be returned to the storage area. - (5) The minimum number of personnel shall accompany explosives being transported on elevators. - Operations d. - (1) EED devices shall not be electrically connected to systems until power on/power off stray voltage tests are performed. - (2) The Space Shuttle Vehicle (SSV) [i.e., the Orbiter, External Tank (ET), SRB, Payload with in the Orbiter) as an integrated vehicle or single element and Pyro Initiator Controller (PIC) Ground Support Equipment (GSE) shall be powered down during electrical connection/disconnection of explosive/pyrotechnic devices, except as allowed in (7), (8), and (9) below. - (3) Controlled switching and Radio Frequency (RF) silence shall be in effect during electrical connection/ disconnection or during the removal of Faraday cap/shorting plug of explosive/pyrotechnic devices. - (4) Facility doors and openings shall be closed during electrical connection/disconnection of pyrotechnic devices, except where required for Vehicle Assembly Building (VAB) chimney effect. - Safety concurrence shall be required prior to payload power-up testing after payload (5) Category A final explosives connection. - (6) **RF Transmissions** - Cellular phones, answer back pagers (RF), portable computers, and portable hand-held KSC-controlled radio transceivers operating in the Very High Frequency (VHF) and Ultra High Frequency (UHF) ranges shall not be allowed within 25 feet of flight hardware or launch accessory equipment containing EEDs, which includes NASA Standard Initiators (NSIs), when the shorting/Faraday caps are removed either from the explosives or firing line(s) connected to explosives. Faraday caps shall remain on EEDs at all times unless RF silence has been established. Shorting plugs shall not be acceptable unless provided with a shielding cap that is designed to provide RF protection. - (b) Mobile, KSC-controlled radio transceivers shall not transmit within 50 feet of flight hardware or launch accessory equipment containing EEDs, which include NSIs, when the shorting/Faraday caps are removed and/or firing circuits are not connected. - Unapproved radio transceivers, Citizen Band, and amateur radios shall not transmit within 600 feet of flight hardware or launch accessory equipment containing EEDs, which include NSIs, when the shorting/Faraday caps are removed either from the explosives or firing line(s) connected to explosives. - (7) Safe and Arm (S&A) Devices - (a) Pin Removal Two firing inhibits shall remain when removing an S&A safing pin. - (b) Rotation - Rotation of the Shuttle Range Safety System (SRSS) S&As during ground test and 1. processing shall be performed with the Explosive Transfer Assembly (ETA) or Confined Detonating Fuse (CDF) disconnected from the S&A or at the point of terminus. All rotation testing of S&As shall be completed before the firing circuits are electrically connected, except as required after ordnance connection. Rotation testing of SRSS S&As, with only the initiators electrically connected, shall be performed with a 10-foot clear minimum. - If a condition exists whereby the firing circuits must be connected during the rotation 2. test, a safety assessment shall be provided to show that inadvertent ignition of the detonators shall not occur. - 3. For rotations that require the ETA connected (one-time postordnance connection), all personnel shall clear the appropriate Blast Danger Area (BDA), and a remote rotation shall be completed.
Safety shall be notified prior to rotation of all S&As. SRB ignition S&As shall not be rotated in the VAB. - 4. S&A rotation during Phase 1 or 2 lightning warnings shall be prohibited. - (c) Installation/Removal Upon S&A removal, the igniter well shall be covered with an appropriate hard cover. Faraday caps shall remain on EEDs when installing or removing the S&A. - (8) Orbiter Hatch T-Handle Explosives - (a) The pyrotechnics activation T-handle enclosure lock shall be available at each landing and Transatlantic Abort Landing (TAL) site and shall be installed as soon as possible after a Forward Assessment Team inspection. - The lock shall not be removed during processing until the T-6 hour BDA clear for the (b) start of ET tanking. - Removal of the T-handle enclosure lock shall only be per an approved TOP. A pyrotechnic engineer shall control the T-handle enclosure whenever it is unlocked unless the lock is removed and transported to an approved explosive storage facility. The TOP shall provide a line item "OK To Proceed" real-time signature by the pyrotechnic engineer and Safety immediately prior to lock removal. - (d) Whenever the T-handle enclosure is unlocked, safety pip pins shall remain installed in the hatch and cabin vent T-handles. - (9) SSV Explosives Installation, Connection, Verification and Safeguards - (a) SSV hypergolic servicing normally will be accomplished prior to SSV explosives operations (Operations and Maintenance Instruction [OMI] S5009, Part I), thus avoiding the need for SRB power up after ordnance operations. Exceptions for SRB power up will be: ordnance (Part II), instrument reads, and launch countdown (OMI S0007). - (b) For those payloads that are installed in the Orbiter prior to rollout and do not require payload bay access at the Pad, SSV hypergolic servicing will be performed prior to SSV explosives operations (OMI S5009, Part I). For SSV flows where payloads are installed in the Orbiter at the Pad, and perform explosives operations in parallel with SSV ordnance operations. SSV hypergolic servicing may be scheduled following OMI S5009, Part I. - The following SSV explosives operations and safeguard requirements shall be followed upon completion of OMI S5009, Part I, through launch: - During OMI S5009 Part I, all vehicle and GSE explosives items, except the Range Safety initiators, Range Safety CDF, and the SRM Ignition S&A control cables, shall be connected. - Prior to any explosives connection, functional tests shall be performed on critical Master Events Controller (MEC) PIC circuits. - After completion of the functional tests, the MEC Critical Commands shall be disabled and the SSV and GSE PIC racks shall be powered down. - In parallel with the subsequent pad clear, the active version of TCS sequence VFC81 shall be replaced with a dummy version (Rev. 0) in the C10 console and any hot spare console that is loaded with C10 software. Console dumps shall be performed to verify that VFC81 Rev. 0 is loaded in both consoles. - d. Power-off stray voltage checks will be performed prior to installing/connecting the explosives - After completion of explosives connection, the SSV and GSE PIC racks will be powered up for PIC resistance tests. - f. After PIC resistance tests, the SRBs shall be remotely powered down. The MECs shall be powered down after Space Craft Operator (SCO) ingress. - 2. After the SRBs are powered down, the following safeguards shall be in effect: - VFC81 Rev. 0 shall remain loaded at C10 and the hot spare(s). a. - MEC Critical Commands shall remain disabled. b. - C. Ground Operation Aerospace Language (GOAL) programs capable of firing PICs, except SRSS PICs, shall not be activated. - SRB power shall be applied for instrumentation reads only, except in OMI S0024, Prelaunch Propellant Loading; OMI S5009, Part II; and OMI S0007 Launch Countdown. Any other exceptions shall be approved by the Space Flight Operations Contractor (SFOC) and the KSC Shuttle S&MA organization. - 3. OMI S5009. Part II. shall be performed in the following sequence: - SSV powered up for the Range Safety Open Loop Test, flight code insertion and the Closed Loop Test. - SRBs, ET, Orbiter, and MEC power removed, power off stray voltage checks performed, and the SRSS NSIs, SRSS CDF, and SRM Ignition S&A control cables connected. - C. SRM Ignition S&A safing pins removed. - d. After completion of explosives Part II (S&A hookup), the forward skirts and ET/Intertank (IT) doors will be controlled with safety signs until flight doors are installed. - The BDA shall be cleared and the Orbiter/SRB/GSE PIC resistance tests shall be performed, all all S&As (SRM ignition and SRSS) will be rotated to the armed position, then back to the safe position. - The SRBs will be powered down (remotely), the SCO will ingress, and the MECs will be powered down. - The S&As will be physically inspected to verify that they are in the safe position, then final SRB forward skirts and ET inner tank area closeouts will continue. - After SRB final power down in OMI S5009 Part II, the following safeguard restrictions shall be in effect in addition to those in effect for Part I: - GOAL programs capable of arming or firing SRSS PICs, or arming SRSS or SRM Ignition S&A devices, shall not be activated. - b. SRSS vehicle power shall remain off. - 5. If OMI S5009, Part III is performed (i.e., all explosives connected during one operation), the same restrictions for Parts I and II shall apply, and OMI S0024 (i.e., SRM power up) shall be performed before OMI S5009, Part III is authorized to start. - 6. During SSV explosives operations, the following clearing requirements shall be in effect: - During explosives installation/connection, nonessential personnel shall be cleared to the a. Pad fence. - After explosives connection, and prior to the first MEC power up, all personnel, except b. the SCO, shall be cleared to the Pad fence. - C. After explosives connection, and prior to the first SRB power up, all personnel shall be cleared from the BDA. - d. All personnel shall be cleared from the BDA for the PIC resistance tests. - 7. During processing in the Orbiter Processing Facility (OPF) or at the Dryden Flight Research Facility (DFRF), Orbiter power down is not required for pyro interrupt box installation. Orbiter power down is required for disconnection of live drag chute explosives. - For disconnections of live explosives, a hazardous control area shall be established, RF a. silence and controlled switching shall be in effect, and the OMI shall ensure that PIC circuits are safed by verifying PIC capacitors are discharged. - A Problem Report (PR) shall be written and the Orbiter powered down prior to disconnection of all live explosives encountered, which was expected to be spent (Nose Landing Gear Strut Thruster and Separation Pyros). - Orbiter power down or controlled switching is not required when C. connections/disconnections are made to pyrotechnic circuits that are shorted or isolated from the Orbiter electrical system. - SSV Ordnance Rollback Configuration (10) If there is a rollback to the VAB after OMI S5009 has been performed, the minimum ordnance configuration shall be as follows: - No vehicle power in the VAB. Ordnance disconnect is not required (ET Vent Arm System [ETVAS] ordnance disconnect required because of physical ET separation from launch pad). GSE PICs, ground PIC rack circuit breakers open and tagged out. VFC81 Rev. 0 shall remain loaded. - Orbiter power only in the VAB. Ordnance disconnect not required (ETVAS ordnance (b) disconnect required because of physical ET separation from launch pad). MEC 1 and 2 switches open and tagged out. GSE PICs, ground PIC rack circuit breakers open and tagged out. VFC81 Rev. 0 shall remain loaded. - Orbiter and SRB power in the VAB. Orbiter and SRB ordnance disconnect required in (c) accordance with OMI S5009. GSE ordnance disconnect not required (ETVAS ordnance disconnect required because of physical ET separation from launch pad). GSE PICs, ground PIC rack circuit breakers open and tagged out. VFC81 Rev. 0 shall remain loaded. - Ordnance system work required in the VAB. Orbiter, SRB, and GSE ordnance will be disconnected in accordance with OMI S5009. ### 3.0 PROPELLANT REQUIREMENTS - a. General Hypergolic Propellant Systems Operations - (1) Propellant transfers shall be performed only in Safety-approved areas. - (2) Prior to starting, Hypergolic Vent Exhaust System (HVES) shall be operational. - (3) Toxic propellant systems shall be drained and flushed or purged to nonhazardous concentration levels prior to opening unless personnel are properly protected. - (4) Prior to replacement or storage of components or system repair, hypergolic or toxic system components shall be flushed and purged of all residual propellants and appropriately capped or bagged and labeled prior to movement. - Toxic and/or flammable vapor monitoring shall be required during break-in to any propellant system that has been contaminated by propellants and during the handling of contaminated parts. Toxic vapor monitoring shall also be required at the conclusion of any hazardous operation prior to opening of the control area to unprotected personnel. - Component parts and tools which have been in contact with the oxidizers/fuels shall be decontaminated or considered contaminated and as such shall be handled and transported with the same level of safety precautions applied to the oxidizers/ fuels. - (7) Hypergol Deservicing (OPF-1/2) In the event of a hypergol propellant release during times personnel are authorized in one bay while performing Orbiter hypergol deservice in the other, the following procedure shall be followed, as appropriate: - In the event of a liquid spill, leak or heavy vapor release, the air conditioning system shall be shut down immediately. - In event of a vapor release or leak in the OPF scrubber or outside GSE system, and the (b) OPF is downwind, the air conditioning system shall be shut down
immediately. - b. H₂/O₂ Operations - (1) Personnel exposed to higher than normal concentrations of oxygen or hydrogen gases shall not come into proximity of ignition sources until they have been in a normal atmosphere at least 30 minutes. - Systems previously serviced with gaseous or liquid hydrogen shall be purged until the hydrogen content of the purged gases is less than 1 percent. Hydrogen systems shall be purged until the oxygen content of the purged gases is less than 1 percent (inert) before any hydrogen is allowed into the system. - (3) Replenishment of the LH₂/LO₂ storage tanks or local hazardous operations in the storage facilities shall be performed in series. - Auxiliary Power Unit (APU)/Hydraulic Power Unit (HPU) Exhaust/Drain Plugs Removal C. APU/HPU plug removal shall be as late as possible prior to clearing the control area for test/launch. Toxic Vapor Checks (TVCs) shall be performed during removal. No other checks shall be required prior to test/launch if a zero reading is obtained at the time of plug removal. - TVCs of the SRB APU exhaust and drain ports shall be performed upon test completion or launch scrub. Plugs shall be installed prior to opening the control area. When the Rotating Service Structure (RSS) is retracted for test, TVCs and Orbiter exhaust plug installation shall be performed upon completion of the first rotation of the RSS to the Orbiter mate position following the tests. - (2) The Orbiter APU exhaust ducts shall be vented outside the Payload Changeout Room (PCR) when the PCR doors are open and plugs are removed. TVCs of the APU exhaust ports shall not be required when the plugs are installed and PCR doors are closed. The Orbiter/SRB APUs shall have TVCs performed daily when the Orbiter/SRB Fuel Supply Modules (FSMs)/APU systems are fueled with N₂H₄ and the exhaust plug is removed. - d. Hypergolic Propellant Scrubber Operations - (1) Scrubber system configuration shall be verified before the power-up of the fuel and oxidizer scrubbers in storage facilities, except in emergency conditions. Restrictions shall be implemented in accordance with Chapter 4 of this KNPR. All scrubber liquor shall be sampled. - (2) **OPF Hyper Scrubbers** - Each scrubber shall be limited to 400 Standard Cubic Feet per Minute (SCFM) flow. (a) - (b) The scrubber shall be running when two aspirators are used simultaneously. - (c) TVCs shall be documented for each backyard entry. - Hypergol equipment/parts, including the associated clean gas equipment, shall be dedicated to fuel or oxidizer media systems. Exception #1: Tube/Pipe parts and fittings remain as general use (non dedicated) subject to the following conditions: - The propellant contact surface(s) is to have a material comprised solely of type 304/316 SST, or Type 304L/316L SST (if welded), or engineering approval equal. - Verification of precision cleaning in accordance with Level 300A (minimum), Test (2) Method 1 of KSC-C-123. Exception #2: Parts/equipment previously dedicated/"part-marked" ("Fuel Use Only" or "Oxidizer Use Only") for use with one media may be re-identified and used with other hypergol media subject to the following conditions: (1) Verification of Section 3.0e(1) and 3.0e(2) above. - All soft goods (including lining) shall be replaced with new soft goods comprised of a (2) material compatible with the media, as specified in MIL-Type-J-Fluid Service 79K11948, for which it is intended for use. - (3) Remarking shall be controlled through the GSE Material Review (MR) process. - f Flowing/Venting of Inert/Toxic Gases/Vapors - (1) TVCs shall be performed following the flow or venting of toxic fluids or gases. - Oxygen level checks shall be performed prior to entry into the Orbiter access white (2) room, all Orbiter compartments, and any other areas if inert gases have been activated or released. - (3) Warning signs shall be posted on or in close proximity to all engines being actively purged with an inert gas. Signs need not be attached to the engine but shall be readily visible and worded to alert personnel of the hazard. - Orbiter Processing with Hypergolics Onboard g. - (1) Introduction These requirements delineate specific information, actions, and controls that relate to processing an Orbiter containing Orbital Maneuvering Subsystem/Reaction Control System (OMS/RCS) propellants. These requirements complement current Emergency Procedures Documents (EPDs), which provide emergency actions for routine and major test operations at their respective sites. The Orbiter is processed through a normal turnaround with residual hypergolic propellants in the OMS and RCS tanks. In addition, propellants are retained in the RCS manifolds, the OMS feedlines, and the OMS pod crossfeed system. - (2) System Configuration Ground Rules Matrix - (1) Dual Isolation: All OMS/RCS systems shall maintain dual valve isolation between tank bulk fluids and ambient air from OPF safing until Pad propellant servicing for launch, except when hardware failures, including component removal and replacement, dictate an alternate configuration or when circumstances are such that single valve isolation better protects the system from possible thruster valve leakage. - RCS Thruster Thermal Conditioning: The RCS primary thrusters must be thermally conditioned to prevent thruster valve leakage of propellant. - Safety Considerations/Requirements for Arming the Driver Switches (VAB) (c) - 1. Arming of drivers or removal of switch guards is not allowed. - (d) Safety Considerations/Requirements for Arming the Driver Switches (OPF/Pad) - 1. OPF Bay clear or Pad clear above surface, except for two SCOs (in the crew compartment) with emergency breathing devices available. - 2. In the event of a thruster activation, emergency exhaust fans will be turned on. The SCO will immediately set all driver switches to OFF. SCOs will remain at their station inside the crew module until directed to evacuate by the Orbiter Test Conductor. (The crew compartment is purged, which should prevent vapor concentrations from intruding.) In the event vapors are detected in the crew compartment, emergency breathing apparatus should be donned and evacuation expedited. - 3. The driver guards shall be installed and locked prior to resuming scheduled work. - RCS Trickle Current Testing: During trickle current testing, a short 12-15 volt driver (e) output pulse of approximately six milliseconds can occur when a driver is turned on with driver power OFF. While there is adequate margin to preclude any primary thruster valve motion. analysis has shown that a negative margin could exist in the worst-case conditions for vernier testing. Procedures are required to preclude personnel exposure if negative margin causes momentary valve motion. - (3) System Monitoring Tasks Work areas containing hypergolic propellants shall be monitored periodically for leaks. - h. SRM Processing Requirements - (1) General - Personnel shall not enter the SRM bore when the SRM is in the vertical position until a documented safety assessment has been performed to identify/mitigate all hazardous conditions and ensure compliance with established safety and health requirements and standards. - (b) Conductive bore inspection pads shall be installed in the bore for personnel access when the SRM is in the horizontal position. - Loose propellant and Ammonium Perchlorate (AP) shall be removed from nonpropellant (c) surfaces. Any loose propellant on propellant surfaces shall be removed. AP shall be removed from the propellant surface where the inspection pads are to be installed. AP removal shall be accomplished using clean cotton cloths wetted with distilled or deionized water and gently pressing onto the surface and lifting free. Do not rub. Remove excess water. - (d) Loose propellant, solid propellant cuttings, and AP (including contaminated cloths) shall be placed in velostat plastic bags, inside a closed, grounded, metal container, for pickup and delivery to the Ordnance Storage Facility (OSF) and subsequent disposal. The designated staging area for the waste is the northwest corner of the Rotation Building and the waste shall be removed within one shift (8 hours). - Conductive plastic sheeting (velostat) shall be placed on railcar surfaces at bore entrances to prevent contamination of propellant. Sheeting shall be grounded to a common ground with the segment/railcar prior to installation. - Open end(s) of segment shall be covered with velostat sheeting securely anchored to (f) prevent wind damage during outside moves. Personnel entering the bore shall wear conductive bags over socks. No shoes shall be (g) worn in the bore. #### (2) **End Ring Covers** End ring covers shall be reinstalled at the completion of all inspections. Forward covers shall be installed prior to break-over operations. - Cutting and/or Trimming (3) - (a) Railcars and rolling stock shall be moved from the railroad tracks located between the Rotation, Processing, and Surge Facility (RPSF) main gate and Kennedy Parkway North. - (b) The segment shall remain secured to the railcar, railcar brakes set, and segment connected to facility ground. The forward segment shall be orientated with the forward dome end-facing west during grain trimming. - (c) Doors on the West end of the Rotation Building shall remain closed during the trimming of propellant. - (d) Public Affairs (PA) tour buses shall be rerouted during the operation. - (e) Only tools and equipment designated for cutting/trimming of grain shall be used. - Upon completion of grain trimming, the segment end shall be securely covered and the (f) segment moved into the Rotation Building. - i. **RPSF Operations** The H77-0412 Impact Covers (Protective Pies) shall be installed as soon as the two point lifting beam is removed from the aft and center segments following breakover. Modified, S&MAII diameter, covers may be used during inspection and/or repair of vertical segment when access is limited to the clevis area.
Open Grain Inspection of Booster Separation Motors (BSMs)/Rocket Motors at the OSF j. Orientation of BSMs for inspections shall be toward the exterior (south) wall to minimize property and equipment damage and/or personal injury. k. SRB Igniter The igniter shall not remain at the operational site but shall be installed or taken to the OSF. - I. SRM Segment Transfers - A segment shall not remain parked outside the VAB/RPSF any longer than required to perform electrostatic scan unless a written discrepancy condition exists. - (2) Two segments may be permitted in the VAB transfer aisle only during SRM stacking operations and with Safety concurrence, providing that: - (a) Segments are spaced a minimum of 240 feet apart. - (b) Neither segment is a forward segment. - (c) Any segment attached to a crane must be soft mated or hard down on pallet. - (3) The segmented storage (impact) cover shall be in place under the weather cover on the forward end of the segment prior to leaving the building. - After moving a segment between buildings, an electrostatic scan of the pallet shall be required only when humidity levels drop below 30 percent. - (5) Operations shall be stopped for electrostatic readings greater than 1 kV. - m. SRB Hoist and Stack on Mobile Launch Platform (MLP) The SRM impact covers shall be in place on the forward end of the segment when in the VAB. The only exception is when the segment is in the high bay during scheduled operations, with the following precautions: - (a.) The covers may be removed provided the entire high bay, in which the work is being performed, is cleared except for personnel man-loaded by OMI performing the tasks. - (b.) Personnel shall not work above the open grain area or do unrelated work within 10 feet of the open grain operation. - Handling and Transfer of Hydrazine (N₂H₄)/Monomethyl Hydrazine (MMH)/Nitrogen Tetroxide (N₂O₄) - Hydrazine/MMH/nitrogen tetroxide vessels, contaminated tools and GSE, and Propellant Handlers Ensemble (PHE)-suited personnel shall ingress/egress test cells by an exterior door (not through inhabited areas). - (2) Fuel and oxidizer vessels shall not be transported together or placed within 25 feet of each other. - (3) Storage of fuels or oxidizers shall not be permitted in test cells or on hypergolic service pads. Placement may precede the start of operations, as directed by the TOP. Only Department of Transportation (DOT) compliant containers specifically marked for anhydrous hydrazine, methyl hydrazine, or nitrogen tetroxide shall be used to collect hypergol fuel or oxidizer (including wastes). - A limit of four solid waste containers (two in use, two awaiting sample results), and eight liquid waste containers (four in use, four awaiting sample results) shall be allowed to be staged at the hypergolic sump sites. Containers that exceed this limit shall be removed within 3 working days from completion of the operation that generated this waste. - Containers shall not be filled to more than one-half capacity marked accordingly. (5) - (6) These requirements shall also apply to tanker operations. # APPENDIX A TO F # LIST OF KSC APPROVED EXPLOSIVES TEST EQUIPMENT | Manufacturer | Model | | |--|--|------------------| | Alinco | 101-5A1
101-5BFG
101-5BPGG
101-5CFG | *
*
* | | ETI (Dupont) Blasters Multimeter | 101
101A | | | Fluke | 11
87
8012A
8600A | | | Hewlett Packard | 3457A
3466A
4328A | | | Hypertronics Megaohmeter | НМ6В | | | Keithley | 580
8600A | | | Space Electronics Igniter Circuit Tester | 101-5AF
101-5AL
101-5HJ
101-5HJ/HJR
101-5HP
101-5RZ-3 | * * * * * * | | Stray Voltage Checker | C721127-2 | | | Valhalla Digital Igniter Tester | 4314A
4313AB
4314AN
4314B
4314KB | *
*
*
* | ^{*} These meters are approved for NSI Bridgewire Measurements only. ### ATTACHMENT G ## KSC SUPPLEMENT TO NASA-STD-8719.9. NASA SAFETY STANDARD FOR LIFTING DEVICES AND EQUIPMENT #### 1.0 HOISTING AND HANDLING The Lifting Devices and Equipment Manager (LDEM) shall be the single point of contact for the KSC lifting program. - a. Safety and reliability analyses shall be performed on cranes, hoists and hydra-sets for critical lifts to identify single failure points and hazards. - b. Lifting/Suspension of Loads - (1) Loads shall not be lifted, suspended, or transported over flight hardware or one-of-a-kind Ground Support Equipment (GSE), whose loss would have serious programmatic impact, unless the lift is essential to perform a Technical Operating Procedure (TOP) controlled task. Lifting the External Tank (ET) over the Orbiter sling is permitted. - (2) Space Shuttle flight hardware lifting, stacking or mating operations in progress during launch countdown shall be static or soft-mated by L-1 hour. Static conditions for Solid Rocket Motor (SRM) segments shall either be within 5 feet of the transfer aisle floor, or if not softmated, the segments shall not engage the clevis or Field Joint Assembly Fixture (FJAF). The forward assembly shall remain static above and shall not engage the forward segment. Static condition for the Orbiter and ET, if not soft-mated, shall be in the transfer aisle. - **Load Tests** C. - Lifting equipment load tests shall not be performed above flight hardware or critical GSE (1) or when failure of the lifting equipment could damage flight hardware or critical GSE. - (2) When the Solid Rocket Boosters (SRBs) are stacked or partially stacked, winch load tests shall only be performed with the following restrictions: - (a) Orbiter Engine Service Platform (ESP): Shall not be performed when the Orbiter is mated to the ET. - (b) SRB ESP: Shall be performed if the SRB ESP is in position and supported by the cobra heads. - (3) The following requirements shall be followed when a crane is used to load test other lifting equipment: - Crane hook and load line(s) shall only be loaded vertically. (a) - (b) A certification of the initial proof load test or the current periodic load test shall be supplied with the lifting equipment prior to performing the load test. - The responsible systems engineer's signature shall be required on all TOPs requiring (c) the use of cranes to perform load tests. - (d) Items to be tested by an overhead crane shall be freely suspended from the crane hook with the height of the test not to exceed 6 inches above the floor/working surface. - Items to be tested by a mobile crane shall be suspended from the crane hook and the (e) height of the test shall not exceed 6 inches, or the lowest reasonable height based on dimension and test article configuration. - (f) No overhead crane shall be used to load test items attached to an immovable object. - (q) When a mobile crane is used to load test items attached to an immovable object, the boom angle shall be minimized as much as safely possible to prevent the boom from contacting the boom stops when load testing. - (h) For lattice boom mobile cranes, the boom shall be adequately restrained to prevent damage to the crane due to sudden unloading should the test article fail. - (i) A load-sensing device shall be installed in the lifting assembly. - (4) Appendix A to this Attachment contains the KSC list of nonload test slings. - (5) Appendix B to this Attachment contains the KSC list of cranes used for load testing. - Transit of Cranes C. - Prior to any crane move, the route of travel shall be planned and checked to ensure that adequate clearances exist along the selected route and that the route is adequate for the loads being transported. - (2) Booms/jibs shall be lowered to angles specified by the manufacturer prior to start of move. - (3) All cranes shall maintain at least 2 feet of clearance from walls, overhead trestles, columns, and other structures. - d. Grounding During Hoisting of Flight Hardware - (1) Electrical grounding shall be required, when explosives and/or flammable fluids are involved, per the requirements of Attachment D of this KNPR. #### 2.0 SUSPENDED LOAD OPERATION ANALYSIS/APPROVAL (SLOAA) #### a. General This procedure implements the "National Aeronautics and Space Administration Alternate Safety Standard for Suspended Load Operations" at KSC. This standard has been approved by the Occupational Safety and Health Administration (OSHA) as an alternate to 29 Code of Federal Regulations (CFR) 1910.179(n)(3)(vi), 29CFR 1910.180(h)(3)(vi), and 29CFR 1910.180(h)(4)(ii). #### b. Analysis/Approval Report A report, NASA SLOAA, shall be generated by the operating organization for any suspended load operation involving employee exposure. Employee exposure means having any part of the body beneath the load such that if the crane and/or hoist system (including rigging) were to fail and the load were to drop, the employee could be injured or killed if he or she were in the envelope of the falling load. An accepted, permanent residual risk is where the suspended load operation with employee exposure cannot be procedurally eliminated nor corrected by engineering means. SLOAA reports are posted at the following web site: http://wwwph.ksc.nasa.gov/S&MA/SuspendedLoad.htm. - The Lifting Devices and Equipment Manager shall assign a tracking number and review the SLOAA report. - (a) Those crane and hoist systems without Single Failure Points (SFPs), whose failure would result in dropping the load, require NASA S&MA approval. - (b) Those crane and hoist systems with SFPs, whose failure would result in dropping the load, require NASA Headquarters' (Code Q) review and concurrence. - (2) The operating organization shall compile a package for each suspended load operation to include the SLOAA, the appropriate Systems Assurance Analysis, the applicable working document, and any other supporting data. A cover sheet (KSC Form OT-4129) shall be used for all KSC approval signatures except for the signature of the responsible
program/project or S&MA Division Chief, who shall sign the last page of the SLOAA. - For an emergency or unplanned event where immediate or real-time actions are needed. a NASA Suspended Load Operation Interim Analysis/Approval (KSC Form OT-4130) shall be prepared at the time of the emergency with signature by the responsible program/project or S&MA Division Chief and the user organization's (i.e., contractor) Safety Director appointed representatives. The onsite NASA and operating organization system engineers shall also sign KSC Form OT-4130. ### APPENDIX A TO ATTACHMENT G ### **KSC LIST OF NONLOAD TEST SLINGS** #### 1.0 **GENERAL** Program/project or directorate organizations having design, procurement, operations and maintenance of lifting equipment slings are responsible for submitting requests for changes to the LDEM, with rationale, to the list of nonload test slings. The LDEM will approve/disapprove changes to the list. Requests for additions to the list shall state why the periodic load test will not be performed and should include the following: - a. Design standard(s). - b. Design safety factor(s). - Rated load versus actual load. C. - d. Test history. - e. Operations history. - f. Planned future use. - Material/construction properties. g. - Storage provisions. h. **IDENTIFICATION** - i. Maintenance performed. - Other information that is acceptance rationale to not perform the periodic load j. test. Approved changes to the KSC List of Nonload Test Slings are posted at the following website: http://www-ph.ksc.nasa.gov/S&MA/approved changes to ksc list of .htm. **NOMENCLATURE** | | HOME TO EXTENDE | |----------------|-----------------------------| | ORBITER | | | ARMS-Pad A | Rigging | | ARMS-Pad B | Rigging | | HMF | Rigging | | Midbody-OPF-1 | Rigging | | Midbody-OPF-2 | Rigging | | Midbody-OPF-3 | Rigging | | Payloads-Pad B | Rigging | | A70-0671-04 | OME Nozzle Extension Covers | # **ORBITER** (Continued) | A70-0873 G070-542549-001 G070-542549-002 G073-200042-001 G073-200072-001 G073-200086-001 G073-200086-002 G076-540036-001 H70-0511-4 H70-0529-2 H70-0561 H70-0565 H70-0588-02-002, H70-0588-04-004 | 800-Ton Demag Crane Hook Adapter Bolt Assembly (Radiator Sling) Bolt Assembly (Radiator Sling) Suspension Module Frame Assembly (MVAK) Frame Assembly (MVAK) Strut Assembly (MVAK) Strut Assembly (MVAK) Orbiter Docking System Adapter OMS/RCS (Lifting Beam) Sling Set PLBD Latch Joint Handling/Adapter Set CM Equipment Installation Set Multi-Purpose Installer Aft Fuselage Equipment, less the following (to be load tested before use): G070-550401, G070-550412, G070-550415, G070-550416, G070-550418, G070-550419, | |---|---| | H70-0597-2
H70-0598-00-002 | G070-550421, G070-550422, G070-550600, G070-550721
Orbiter Mating Sling Set
FRCS Handling Sling | | H70-0598-00-003
H70-0651 | FRCS Handling Sling Radiator Deployment Fixture Assembly | | H70-0661 | FRCS Installation/Removal Fixture | | H70-0668 | Rendezvous Sensor Antenna Sling | | H70-0679 | OMS/RCS Pod Lifting Fixture | | H70-0700 | Aft Fuselage Faring Sling | | H70-0703-01-001, | Handling Adapters, less the G070-430588 (to be load | | H70-0703-02-011 | tested before use) | | H70-0713 | OMS/RCS Pod Cradle Set | | H70-0728 | PLBD Hinge Line Handling Adapter | | H70-0743 | Orbiter Ferry Sling | | H70-0760-01-001
H70-0760-02-002 | Aft Fuselage Equipment, less the following (to be load tested before use): G070-550721, G070-550723, G070-550734, G070-550801, G070-550813, G070-550836, G070-551014 | | H70-0768 | Orbiter Forward Handling Adapter | | H70-0790 | Aft Spreader Bar Adapter Sling | | H70-0846 | APS Pod Handling Trolley | | H70-0855 | Dome Heat Shield Light Weight Lifting Fixture | | H70-0860 | Mid-Body LRU Adapter Set (Including Piece Parts) | | H70-0889 | Lightweight Payload Bay Door Strongback | | H70-0894 | EDO Lifting Sling (Excluding Turnbuckle, Shackle, and | | H70-0952
H70-1400 (51155 F207)
H70-1401 (51155 F208)
H70-1412 (51155 F271) | Masterlink assembly) Trajectory Control Sensor Sling Assembly Auxiliary Spreader Beam (RMS) Strongback (RMS) Joint Exchange Support Sling (RMS) | | H70-1504-01 | EMHS Handling Cart Lifting Sling | | H70-1509-04 | PCES GSE Handle Assembly | H70-1509-05 PCES GSE End Handle Assembly **ORBITER** (Continued) VAB 250/175-Ton Lifting Link Load Cells H70-8411 H72-0590 Orbiter/ET Forward Mating Fixture Aft Ball/Fwd Removal Equipment H72-1006 PPU Sling (Including Wire Rope Drop Legs/Shackles) H72-1243 H72-1245 VAB 175/250 Ton Crane Load Indicator Link H72-1270 Counterbalance Lifting Beam LO70-000046-002/-003 **APS Pod Vertical Rotation Adapter** Tunnel Hatch Adapter Track Assembly LO70-000274-119 M70-0007-00-001 OMS Pod Vertical Rotation Sling Set OMS Pod Vertical Rotation Sling Set M70-0007-00-002 OMS Pod Horizontal Handling Sling Set M70-0008-00-001 OMS Pod Horizontal Handling Set M70-0008-00-002 M70-0028-00 (SN 001, 002), Engine Mounted Heat Shield Handling Fixture L070-000151, 79V26573 MD111-0003-2231 Bolt Assembly (Radiator Sling) P53931, P53932 Fuel Cell Power Plant Shipping Container Adapting Frame Compact Support Fitting Lift Adapter 79K24143-8 Orbiter Docking Mechanism Pressure Dome Eyebolts 10MM-3.5 Heavy Equipment General Purpose Rigging (including SFOC HE shackles, wire rope slings, nylon slings, linear fiber slings, metal hooks and structural hook adapters) TSM-LB-1, -2 **TSM Lifting Beam** **EXTERNAL TANK** H78-3008 ET Forward Hoisting Adapter Set ET Aft Hoisting Adapter Set – L/W Configuration (Including H78-3040 Shackles) H78-5008 ET Aft Lifting Brackets (Including Shackles) SRM/SRB H77-0159 Forward Skirt Lifting Lug Kit H77-0181 Forward Skirt Lifting Lug Kit Aft Skirt Lug Kit H77-0206 H77-0325 Lifting Bracket Kit H77-0381 Handling Ring Lifting Bracket Exit Cone Fragment Handling Fixture H77-0430 H77-1201 Empty SRB Hoisting Sling Beam (Less Nylon Slings) H77-1211 Forward Attach Lug Kit Nozzle Removal Fixture Assembly 8U76228 Beam Sling Assembly (Less Cable Drops) 8U72669 Crosby Group Lifting Equipment (including pear links, SRBE-ARF shackles and eyebolts) # **PAYLOADS MECHANICAL GSE** | AB-800 | Pump Module Spreader Beam | |--------------------|--| | G-206-3-1/4 Ton | Cruciform Plug D-Rings | | GH5-00547 | Cargo Element Lifting Assembly (All Load Tested Items on | | | Drawings 82K03175 and 82K03181) | | GH5-00717 | Cargo Element Extension Kit Hoist Rings | | G1-30231 | Orthogrid Handling Fixture Assembly | | G1-30244-1 | Spacelab Orthogrid Installation Fixture | | G1-30244-3 | Spacelab Orthogrid Installation Fixture | | G4-31655 | MPE Cradle Assembly | | G4-31662-1 | MPE Handling Fixture | | | | | G4-31662-3 | MPE Handling Fixture | | G4-32007 | MPESS Shipping Cradle Lifting Sling | | G4-32016 | MPE Handling P/L INTEG Assembly & Ship Cradle | | G4-60013 | MPESS Lifting Sling, I Beam Only | | G4-60014 | MPESS Cradle Assembly | | G4-60015 | MPESS Handling Fixture | | G5-60141-1 | Cruciform Trunnion Beam (Astro I) | | G5-60141-2 | Cruciform Trunnion Beam (Astro I) | | G5-60144-1 | IRS Shipping Container | | G5-60148-1 | Cruciform Trunnion Extension | | G5-60151-3 | Hoist Spreader Beam Assembly (Astro I) | | G5-60151-5 | Hoist Spreader Beam Assembly (Astro I) | | G5-60152-1 | Cruciform Trunnion Plug Assembly (with through bolt P/N | | | G5-60143-1) | | G5-60177-3 | IRS Hoist Spreader Beam Assembly | | G5-60741-1 | Cruciform Handling Sling Link | | HF-2 | WUPPE Handling Fixture | | SK683-46500 | International Standard Payload Rack Lifting Fixture | | C11000 10000 | Assembly | | SKCL-040193 | Multipurpose Lift Fixture | | SKDK-82792-2 | Configuration Trunnion Lift Bracket | | SKMH-026, SKMH-027 | Transport Trailer Antenna Lift Member | | • | • | | SR-8286-1 | Hoist Beam | | TD-1F80519-1SF2-1 | Support, Install – SASA | | TD-1F80519-1SF2-7 | Spreader Bar, Support, Install – SASA | | TD-1F80519-1SF2-11 | Bracket, Clamp – SASA Sling Assembly | | T580664-MTE-501 | S/A Dolly Sling Assembly | | T580679-MTE-501 | PV Array Sling Assembly | | T580680-MTE-501 | PV Array Wing Strongback | | T-5850032 | Battery ORU H-Frame | | T-5850070 | Battery Charge/Discharge Unit H-Frame | | T-5850070 | DC Switch Unit H-Frame | | T-5850070 | Pump Flow and Control Subassembly H-Frame | | T-5850071 | DC to DC Converter Unit H-Frame | | T-5850135 | ORU Box & Fin Protection Fixture H-Frame | | T-5850136 | DC to DC Converter Unit & Fin Protection Fixture H-Frame | | T-8310013 | Platform ORU H-Frame | | . 30.00.0 | a.com orto ir ramo | # PAYLOADS MECHANICAL GSE (Continued) 00E076001-2005 **FSM Support Structure** Handling Device Assembly 1D21080 STT Forward Extension Lift Beam 1D21090-1 1D24149 Payload Insertion Device 1F04103-1 PMA Cradle Assembly 1F44841-1 PMA Main Spreader PMA Secondary Spreader 1F44842-1 1F51678 KU Antenna Lift Sling 1F55222-1 PMA Counter Weight (31-35 pins) PMA Lift Ring Assembly 1F74616-1 1F74620-1 PMA Lift Fitting 1F74621-1 PMA Lift Fitting 1F74622-1 PMA Lift Fitting 1F74623-1 PMA Lift Fitting 1F74632-1 PMA Saddle Assembly 1F74641-1 PMA-3 Brackets 1F74643 PMA Rotation Frame 1F74677-1 PMA Adapter Ring (octagonal ring) 1F74677-1 PMA Frame Assembly 15M20284 Aft Flight Deck Sim Beam **IPS Alignment Stands** 15M20507-1 **IPS Rotation Frame** 15M20510 IPS Sling
Kit Spreader Beam 15M20520 Support & Hoist Assembly, Fluid Panel 79K19139-1 79K19144-14 Interface Control Panel Hoist Spreader Beam Interface Control Panel Support Assembly 79K19144-2 Hoist Spreader Beam Assembly (ESGE) 79K19155-1 79K20826 Spreader Frame Assembly (ESA Strongback) Lifting Saddle for ESA Strongback (612.110) 79K23032-2 Lifting Saddle for ESA Strongback (612.110) 79K23032-3 PHF Forward Lifting Yoke 79K24304 Integrated Partial PL Lift Assembly 79K25261 CXFORM Rotation Sling, Spreader Beam 79K25503 Igloo Rotation Device 79K27404 79K27424 PTC & MTC Hoist Beam Low Crane HT 79K27432 IPPLA to PAL Hoist Fitting 79K27440-1 Hoist Adapter for Igloo Trolley 79K27452 **IPS Hoist Cap** 79K27461-1 LT WT Double Rack Handling Frame LT WT Double Rack Handling Frame 79K27461-133 LT WT Single Rack Handling Frame 79K27461-134 79K27461-2 LT WT Single Rack Handling Frame **CRF Hoist Beam Assembly** 79K33197 Contingency Igloo Cover and LRU Removal Device 80K01300-8 thru 80K0300-12 MUC Cover Lifting Beam Assembly 82K00077-1 Hoist Beam Modification Access Bridge O&C Bldg. 82K00880 82K03083-2 SPRD Hoisting Sling Assembly # **PAYLOADS MECHANICAL GSE (Continued)** | 82K04516-1 82K06034-1 82K06034-6 82K06034-6 (40B1) 82K06034-6 (G-2130) 82K06034-15 82K06034-16 82K06034-16 82K06034-8 82K06034-42L1 82K06744-2 82K06757-1 612.001.00.000.03 612.006.03 612.006.04 (I 3) 612.006.04 (I 2) 612.006.06.01.501.03 612.006.06.01.502.03 612.006.06.01.503.03 612.006.06.01.504.03 612.007 612.013.01.01.000.03 612.007 612.013.01.01.000.08 612.015.02.00.000.08 612.015.03.00.000.08 612.015.05.00.000.08 612.045 612.049.02.13.000.03 612.049.02.15.000.03 612.045.05.00.000.03 (9003555-1) | Contingency Access Beam Hoist Ring Rotation Handling Fixture Breakover Beam RHF Yoke RHF Spreader Beam RHF 25 Ton Shackle RHF Adapter Beam RHF Adapter Beam Single Lift Spreader Beam FWD Rotation Beam Link S – Band Antenna Support Assembly Lifting Sling S – Band Antenna Strut Assembly UHF Antenna Lifting Sling Assy Module Handling Cage Integration Trolley VSK Hoisting Traverse Beam VSK Stabilizing Strut VSK Tilting Beam VSK Crosshead for Hoist Slings VSK Crosshead for Hoist Slings VSK Hoisting Lug Ind Cone Stand PAL Segment Sup Integration Trolley Hoist Frame With Cover Support Igloo Handling Kit Support Stand Igloo Handling Kit Sup Str Igloo Handling Kit Pump Pck Lower Sup Pump Package Str (Upper) Igloo Handling Kit Pump Pck Upper Sup Igloo Handling Kit Off Line Sup Frame Hoisting Device FOP Sub-Floor Install/Removal Kit R&F Support Braces Kit (Upper) R&F Support Braces Kit (Lower) Double Rack Handling Structure | |---|--| | 612.050.02.01.000.03
612.050.02.01.066.03 | Double Rack Adj Mechanism Double Rack Tie Bar Control Contor Back Hdl Structure | | 612.050.04.00.000.03
(9005361-1)
612.050.06.02.000.03 | Control Center Rack Hdl Structure Double Rack Structure Tilting Frame | | 612.050.06.04.000.03
612.050.07.00.000.03 | Hoist Traverse, Rack H&T Kit Double Rack Handling Structure | | (9005211-1LI) | | # PAYLOADS MECHANICAL GSE (Continued) 612.056 Handling Ring Kit Module End Cone Platform 612.058 Pallet Cover Hoist Beam 612.059.52.07 612.065.01.00.000.03 Single Rack Handling Structure (9003554-1)612.065.02.01.000.03 Single Rack Adjusting Mechanism Single Rack Tie Bar 612.065.02.01.066.03 612.065.05.02.000.03 Single Rack Structure Tilting Frame Hoisting Traverse, Rack H&T Kit 612.065.05.04.000.03 Single Rack Handling Structure 612.065.06.00.000.03 (9005210-1LI) 612,110 Horizontal Sling Kit 612.111 Handling Adapter Kit, End Cone 612.113 Trunnion Handling Fitting 612.119 Attenuation Frame 612.126.01.01.000.03 Horizontal Access Kit Ring 612.126.01.11.000.03 Hoisting Device RAAB Handle 612.131.01.03.000.03 Hoist Lug Lifting Device for UGS 884.421000.00.0 884.432000.00.0 PAR Hook 884.482000.00.0 Payload Simulation Plate HVE Hoisting Slings (excluding 3 ea. web straps, 3 ea. 2042-822-200.00C shackles and 3 ea. turnbuckles) 2042-822-400.00C Adapter, Plate Hoisting Sling (excluding 4 ea. web straps, 4 ea. shackles and 4 ea. turnbuckles) Hoisting Adapter 1066846 Igloo Hoisting Strut 1068941 1217515 Spacelab Rack and Floor Trans. Structure Igloo Hoisting Device 9004474-1 9004475-1 Igloo Hoisting Device Igloo Tilt Frame 9005512 SCU Lifting Device 9007770-1 LRU Handling Adapter 9070400 OPF (ORU) Lift Beam 9070401 MPESS Saddle Lifting Bracket 9007723-1 10-5-24, S/N 54478-2 Fork Lift Beam Hook 105-6LB **Battery Lifting Beam** 105-FA-6 Fork ### PAYLOADS MULTI-MISSION SUPPORT EQUIPMENT | Orbiter Payload Canister-All Lifting Hardware | |--| | Pad Hanger Link Assembly | | PCR Canister Stow Cable | | Payload Strongback Fixture | | Payload Ground Handling Mechanism | | Main Rod Assembly (Payload Strongback Fixture) | | | # **PAYLOADS MULTI-MISSION SUPPORT EQUIPMENT** | 79K08502-3 | Brace Rod Assembly (Payload Strongback Fixture) | |------------|---| | H70-1329 | Payload Handling Fixture | | 79K24304 | Lifting Yoke & Shackle (Payload Handling Fixture) | | H70-1360 | Single Pallet Rotation Device | | 79K28304 | Single Pallet Rotation Device Stand | | H72-1228 | Canister P. L Fittings & Support Rails | | P70-0870 | Single Point Lifting Frame Assembly | | S70-1309 | External Power Supply - Pallet Lift Frame | | B1/3/B-646 | Telescoping Beam | # APPENDIX B TO ATTACHMENT G KSC LIST OF CRANES USED FOR LOAD TESTING (NOTE 1) #### 1.0 **GENERAL** Primary organizations having design, procurement, operations and maintenance of lifting equipment are responsible for submitting requests for changes to the Lifting Equipment Devices Manager (LDEM), with rationale to the list of cranes used for load testing. The LDEM will approve/disapprove changes to the list. Requests for changes to the list shall state what load testing will be performed and should include the following: EΛ - a. Design standard(s). - b. Design safety factor(s). - C. Test history. - d. Operations history. - Maintenance history. e. - Other information that is acceptance rationale to perform the load testing. f. ## **CRANE DESCRIPTION** VAD 205 Tan Dridge Cropes ### **ALLOWED LOAD TEST % (NOTE 2)** ### SPACE FLIGHT OPERATIONS CONTRACT | VAB 325-Ton Bridge Cranes | 50 | |----------------------------------|-------------| | VAB 250-Ton Bridge Cranes | 50 | | VAB 175-Ton Bridge Crane | 50 | | VAB Cell 1 10-Ton Bridge Crane | 50 (NOTE 3) | | RPSF 200-Ton Bridge Cranes | 50 | | OPF 30-Ton Bridge Cranes | 50 | | K6-1996 3-Ton Monorail Crane | 100 | | K6-1996 1 ½-Ton Monorail Crane | 100 | | Linkbelt 250-Ton Mobile Crane | 75 | | Manitowoc 140-Ton Mobile Crane | 75 | | P&H 65-Ton Mobile Crane | 75 | | Linkbelt 40-Ton Mobile Crane | 75 | | Drott 30-Ton Mobile Crane | 75 | | Broderson 8 1/2-Ton Mobile Crane | 75 | | P&H 300-Ton Mobile Crane | 75 | | Tadano 130-Ton Mobile Crane | 75 | | ARF 1 Ton Gantry Hoist | 50 | | | | ### CHECKOUT ASSEMBLY & PAYLOAD PROCESSING SERVICES CONTRACT | O&C 27 ½-Ton Bridge Cranes | 50 | |----------------------------|----| | O&C 4-Ton Monorail Crane | 50 | | O&C 2-Ton Bridge Crane | 50 | | O&C 1-Ton Jib Cranes | 50 | | VPF 10-Ton Bridge Crane | 50 | | PHSF 50-Ton Bridge Cranes | 50 | | SAEF-2 20-Ton Bridge Crane | 50 | | CRF 100-Ton Bridge Crane | 50 | | MPPF 20-Ton Bridge Crane | 50 | # JOINT BASE OPERATIONS SUPPORT CONTRACT | P&H 90-Ton Mobile Crane | 75 | |--|-----| | Manitowoc 140-Ton Mobile Crane | 75 | | P&H 65-Ton Mobile Crane | 75 | | Linkbelt 22-Ton Mobile Crane | 75 | | Proof Test Fixture 10-Ton Bridge Crane | 100 | ### **ENGINEERING DEVELOPMENT CONTRACT** | P&H 50-Ton Mobile Crane | 75 |
-----------------------------|----| | M7-505 10-Ton Bridge Cranes | 50 | | Lifttech 5-Ton Job Crane | 50 | ### **NOTES:** - 1. Load test requirements in Attachment G, Section 1.0c(3) shall be adhered to. - 2. Allowed load tests % is calculated based on the crane's rated capacity. - 3. It is acceptable to perform SSME rotating sling 1G functional testing only at greater than 50% of crane capacity. ### ATTACHMENT H ### SYSTEM SAFETY AND RELIABILITY ENGINEERING REQUIREMENTS #### 1.0 **GENERAL** The system safety and reliability engineering requirements delineated herein are intended for systems and operations directly supporting the performance of KSC's mission. Formal, documented system safety and reliability analyses are required for equipment (i.e., facility systems, Ground Support Equipment [GSE]) that supports the KSC institutional infrastructure and is directly involved in flight hardware processing. Ground systems used at KSC, for which KSC does not have sustaining engineering responsibility, shall meet the applicable system safety and reliability analysis requirements of the NASA Center or Program having sustaining engineering responsibility. KSC shall have the right to review all engineering documentation to assure that risks to KSC personnel and property from such equipment are adequately controlled. Program/project or directorate organizations (and their associated contractors) shall develop documented processes for accomplishing these system safety and reliability engineering requirements on systems and operations for which they have contractual responsibility. All documentation and data shall be available for review by NASA. Program/project or directorate organizations shall ensure their contractors develop and maintain a list of all systems and equipment for which they have contractual system safety and reliability engineering responsibility. This list shall include the type and level of system safety and reliability analysis performed or required to be performed. Systems and equipment designed for use in the Space Shuttle, Space Station, and Launch Support Program (LSP) programs shall meet the system safety and reliability engineering requirements of those programs. It is anticipated that other future programs that are implemented at KSC will also have specific ground system safety and reliability engineering requirements that shall be imposed on NASA/KSC-managed development projects. #### 2.0 HAZARD ANALYSIS/RISK IDENTIFICATION PROCESS The hazard analysis/assessment process is a principal factor in the understanding and management of technical risk. This process serves several purposes, including assessing compliance of safety requirements; providing feedback throughout the system design and development process to support the optimization of the inherent safety of designs; - Program/project or directorate organizations (and their associated contractors) are responsible for the performance of vigorous, proactive system safety engineering hazard analyses throughout the program/project lifecycle (i.e., design, test, operations). The analyses performed shall identify and document hazards to: - (1) Assess compliance of safety requirements. - (2) Identify and document system safety and mission success risks early in the program/project and update the status of these risks throughout the program/project. - (3) Provide feedback throughout the system design and development process to support the optimization of the inherent safety of designs. - (4) Analyze ground processing operations, beginning in the system design phase, to identify and mitigate any operational hazards, integration hazards and human factor issues. - Analyze and prioritize hazards (risks) for probability (Likelihood of Occurrence and (5) impact (Severity). - Assure that valid and verifiable hazard controls are established, implemented, and tracked. - (7) Provide for management acceptance of risks. - b. There are several system safety analyses that can be used to identify hazards. There encompass various degrees of specialization, and represent both qualitative and quantitative methods. Example system safety analyses that can be utilized include: - (1) Preliminary Hazard Analysis (PHA) - (2) Subsystem/System Hazard Analysis (SSHA/SHA) - (3) Operating and Support Hazard Analysis (O&SHA) - (4) Software Safety Analysis (SSA) - (5) Failure Modes and Effects Analysis (FMEA) - (6) Fault Tree Analysis (FTA) - (7) Probabilistic Risk Assessment (PRA) - (8) Lessons Learned #### 3.0 RELIABILITY AND MAINTAINABILITY (R&M) ENGINEERING Program/project or directorate organizations (and their associated contractors) shall integrate R&M engineering functions into the overall design, sustaining engineering, and logistics support requirements. For system development efforts, the contractor shall develop system R&M requirements appropriate to the mission profile and shall assess designs to assure the requirements are met. R&M assessments shall be provided to support maintenance planning, logistics support analysis, and ongoing Reliability Centered Maintenance (RCM) efforts including trending of equipment reliability and effectiveness of the maintenance program. Program/project or directorate organizations (and their associated contractors) shall develop a documented approach to reliability and maintainability engineering, which addresses, as a minimum, the following three support functions: - (1) The safety risk management process. - (2) The capability for as-scheduled mission success. - (3) Cost-effective ground systems maintenance and support. - Program/project or directorate organizations (and their associated contractors) shall develop and implement reliability analysis processes that shall verify the fail-safe design requirement for GSE and facility systems developed and used at KSC. Noncompliance's with the fail-safe requirement shall be identified, documented, and processed for management risk visibility/acceptance in accordance with applicable programmatic requirements. - There are several reliability and maintainability analyses that can be used to support fail-C. safe verification and other R&M objectives. Example reliability and maintainability analyses that can be utilized include: - (1) Criticality Assessment - (2) Failure Modes and Effects Analysis (FMEA) - (3) Reliability Block Diagram Analysis (RBDA) #### 4.0 NASA-MANAGED DEVELOPMENT PROJECTS NASA/KSC Project Managers, or Lead Designers with assigned project responsibility, are responsible for ensuring the safety and reliability of their developed systems and equipment. This responsibility begins with identification of safety and reliability requirements during the project planning phase and ensuring safety and reliability engineering tasks are included in the project schedule, funded, and executed. NASA/KSC developed systems and equipment shall be designed to minimize hazards and shall incorporate the fail-safe design philosophy. System safety and reliability analyses shall be selected which provide verification of the safety and reliability design requirements, as well as ensure identification and mitigation of risks (i.e., hazards and critical items) present in the design and the intended operation(s) of the systems and equipment. These analyses shall be performed concurrently with the design process, with the safety and reliability design requirements provided at the project design kickoff meeting. Draft copies of analyses should be included in design review packages (i.e., 30/60/90%) distributed for review. As a minimum, analysis results shall be provided to the design team in sequence with equipment/system design process to allow for design correction of any deficiencies identified by the analyses. Residual risks (hazards and critical items) not eliminated through the design process shall be formally documented and presented to management for risk disposition. **ATTACHMENT I** **RESERVED** # **ATTACHMENT J** **RESERVED** ### ATTACHMENT K ### LAUNCH AND LANDING OPERATIONS #### 1.0 FLIGHT HARDWARE ACCESS AFTER PRSD SERVICING - Payload experiments/equipment shall be planned for installation to minimize late stowage requirements during launch countdown. - Experiments/equipment requiring late installation/ early removal at the middeck level may be performed after prelaunch Power Reactant Supply and Distribution (PRSD) servicing and prior to External Tank (ET) Liquid Hydrogen (LH₂) boiloff or postlanding PRSD deservicing upon completion of Orbiter/pad safing operations. - C. Habitable Payload Module Access - Science experiments requiring late access to minimize science degradation may be serviced after PRSD cryo load and prior to ET cryo load. Allowable access shall be only via the Orbiter crew compartment. - (2) Access to a habitable module via the airlock during postlanding Orbiter Processing Facility (OPF) processing may be allowed EXCEPT during the following: - (a) Orbiter jacking and leveling. - At the start of PRSD controlled venting, when a 25-foot clear is imposed, and during cryo tank offload. - When the Orbiter is powered-down, prior to the establishment of PRSD-controlled (c) venting. - When the control area imposed by other priority hazardous operations would preclude access to the habitable payload module. - Initial runway postlanding access via the airlock may be granted after the Safety Assessment Team and the NASA Convoy Commander (NCC) have given a total safety downgrade of the Orbiter, providing: - (a) The Orbiter is powered up, or - Controlled venting via the S70-1214 and the S70-1215, T-0 Cryo Vent Package has been established. #### 2.0 **SCRUB OPERATIONS** - During launch scrub securing, the Safety Control Center (SCC) shall verify the following in sequence: - (1) For scrubs with no personnel on pad: - (a) Hazardous Gas Detection System (HGDS) and LH₂ fire sensors indicate safe. - (b) LH₂ in/to stable replenish or Terminal Count Safing. - (c) Safe to start Liquid Oxygen
(LO₂) drain. - (d) LO₂ in stable drain. - (e) Safe to start LH₂ drain. - (2) For scrubs with personnel on pad: - (a) HGDS and LH₂ fire sensors indicate safe. - (b) LH₂ in stable replenish. - (c) LO₂ in stable replenish. - (d) All explosive devices are safed. - (e) Flight crew egress has begun. - (f) Flight crew is clear of the Blast Danger Area (BDA). - (g) Closeout crew has secured the cabin and white room and cleared the BDA. - (h) Safe to start ET LO₂ drain. - (i) ET LO₂ in stable drain. - (j) Safe to start ET LH₂ drain. - (k) Safing/securing teams may proceed to BDA. - ET LH₂/LO₂ de-tanking is completed, LH₂/LO₂ tank engine cutoff sensor is indicating dry, (l) and LH₂ leak and fire sensors indicate safe. - (3) For scrubs with only Flight Crew on pad: - (a) HGDS and LH₂ fire sensors indicate safe. - (b) All explosive devices are safed. - LH₂ in/to stable replenish or Terminal Count Safing. (c) - (d) LO₂ in stable drain. - (e) Closeout crew is proceeding to the white room. - (f) White Room O₂ atmosphere is acceptable. - (g) Flight crew egress has begun. - (h) Flight and closeout crews are clear of the BDA. - (i) Safe to start ET LH₂ drain. - Securing teams may proceed to BDA. (i) - ET LH₂/LO₂ drainage is completed, LH₂/LO₂ tank engine cutoff sensor indicates dry, and (k) LH₂ leak and fire sensors indicate safe. - (4) Prior to reentry of safing teams: - (a) Ground Pyro Initiator Controller (PIC) racks are powered off. - (b) BDA roadblocks are maintained. - (c) Gaseous Nitrogen (GN₂)/air changeover is completed (HGDS switches from prime to backup). - (d) Solid Rocket Boosters (SRBs) are powered off. - (e) SRB aft skirt purge is terminated. - (f) Mobile Launch Platform (MLP) Oxygen Deficiency Monitoring System (ODMS) indicates safe. - (g) Orbiter HGDS (backup system) is active. - (h) LH₂/LO₂ purges are initiated. - (i) HGDS (backup system) is monitored during boiloff to less than 1 percent H₂. - LH₂/LO₂ drain back is complete and LH₂/LO₂ storage areas are isolated from transfer (j) lines. - (k) LO₂/LH₂ storage facilities are isolated. - During launch scrub securing, the Post Launch Convoy shall proceed to the pad gate b. and perform the following tasks in sequence: - (1) Enter the pad after notification by the SCC. - (2) LH₂/LO₂ storage area inspection and atmosphere H₂ sampling checks. - (3) Start the MLP skid inspection and atmosphere H₂ sampling checks. - (4) Establish local control area of 150-foot radius of LO₂ and 200-foot radius of LH₂ storage tanks. - (5) Start Pad Terminal Connection Room (PTCR)/Environmental Control System (ECS) depressurization, O₂ checks and GN₂ valves lockout. - Verify less than 1 percent H₂ in ET vent line (Fixed Service Structure [FSS] 203-foot level), facility vent line (FSS 155-foot level), MLP side one H₂ transfer line, and LH₂ Storage Facility vaporizer (less than 4 percent in vaporizer only for 24-hour scrub). (If a longer scrub is determined, the vaporizer shall be purged/verified less than 1 percent H_2 .) - Close E road at pad apron and at Perimeter Road if Gaseous Oxygen (GOX) is present (7) in the LO₂ dump basin. - (8) Start MLP O₂ checks and depressurization. (Entry to the MLP is prohibited, except for Safety inspection team, until acceptable atmosphere sampling (toxic O₂) checks are performed.) - (9) Sound suppression water valve closed and locks installed. - (10)Advise SCC when BDA roadblocks may be released. #### 3.0 **TURNAROUND OPERATIONS** Following launch scrub securing, the following requirements shall be adhered to for turnaround operations: - a. Entry into the pad (slope and above) shall only be for turnaround safing and securing operations. - HGDS and backup system shall remain powered up and monitored until ET H₂ is less than 1 percent. - Following PRSD tank service through scrub/turnaround, except for the white room and crew cabin, the Orbiter mid/aft/fuselage and LH₂ Tail Service Mast (TSM) will remain closed until the PRSD tanks are deserviced and Ground Support Equipment (GSE) inerted. Entry into the aft shall only be performed after concurrence of the KSC Launch Director, S&MA Shuttle Division Chief, and the Space Flight Operations Contractor (SFOC) Safety, Quality, and Mission Assurance (SQ&MA) Director. Any off-nominal conditions that exist with the vehicle or Pad systems will be evaluated and identified either as a constraint or no constraint to aft entry in the scrub turnaround meeting. The following requirements shall be met prior to and during aft entry: - (1) GN₂ purge to the Orbiter has been secured and the manual valves are chained and locked in the ECS room. - LO₂ and/or LH₂ TSM ordnance shall be mechanically safed prior to lowering the triple flip platforms for aft access. - PRSD T-0 supply line may be pressurized with GH2 venting or gas supply during aft entry. If work is to be performed within four (4) feet of the aft interior side of the LH2 T-0 umbilical, a cover must be installed to protect the exposed PRSD GH2 line, or the PRSD GH2 system shall be safed by isolating/terminating the GH2 line pressure source (i.e., secure tank venting and/or terminate T-0 ground reactant gas supply). If access to the T-0 is required, the PRSD system shall be safed. - (4) Safety shall verify acceptable O₂ prior to entry and monitor O₂ and H₂ levels during the operation. - (5) Personnel shall be attired in safety-approved, flame-retardant coveralls and will be briefed on the hazards of the operation. - Only the minimum number of personnel essential to the completion of the task shall be allowed entry into the aft. - Only the minimum amount of platforms necessary to safely accomplish the task and allow egress through the 50-1 and/or 50-2 doors shall be installed. - (8) The TSM final ordnance and closeout for launch or scrub turnaround safing for Operations and Maintenance Instructions (OMIs) S0007 and V3517, may be performed after PRSD tank service. Scheduled monitoring of ET LO₂ and LH₂ vacuum-jacketed lines in the TSMs with the concurrence of the NASA Test Director (NTD) may be performed until TSM closeout for launch. Acceptable O₂ levels are verified prior to entry and O₂ and H₂ levels are monitored during this operation. The PRSD tanks are vented through the TSMs. - d. The following facilities/GSE shall remain closed for duration of ET LH₂ boiloff: - (1) LH₂/LO₂ TSMs. - (2) H₂ disconnect tower. - (3) H₂ flare stack area. - (4) 50 feet of LH₂ cross-country vent line. - (5) North and ECS bridges. - (6) LO₂ dump basin. - (7) GO₂/GH₂ facility. - (8) MLP zero-level between sound suppression pipes and SRB flame hole. - (9) Within 10 feet of GH₂ panel on FSS 75-foot level. - (10)Within 50 feet of GO₂ and GH₂ facility cross-country lines. - For turnarounds involving Space Shuttle Main Engine (SSME) firings, access to LH₂ Tail Service Mast TSM may occur to connect SSME drying purge with Safety concurrence. - The rotation of the Rotating Service Structure (RSS) in a scrub turnaround is normally performed after the completion of ET H₂ boiloff and inert to less than 1.0% H₂. The rotation of the RSS prior to completion of ET H₂ boiloff and inert to less than 1.0% H₂, requires the concurrence of the KSC Launch Director, S&MA Shuttle Division Chief, and the SFOC SQ&MA Director. Any off-nominal conditions that exist with the vehicle of Pad systems will be evaluated and identified either as a constraint or no constraint to RSS rotation in the scrub turnaround meeting. For additional information, see KSC Hazard Report LL-0112, "Early Rotation of the Rotating Service Structure Prior to External Tank boiloff and Inert to Less Than One Percent GH₂." The following requirements shall be met prior to the start of RSS rotation preoperations tasks: - (1) Ground PIC racks shall be powered **OFF**. - (2) BDA roadblocks shall be maintained, as applicable. - (3) The GN₂/air changeover shall be completed (HGDS shall switch from prime to backup). - (4) SRBs shall be powered **OFF**. - (5) SRB aft skirt purge shall be terminated. - (6) The MLP O₂ ODMS shall indicate **SAFE**. - (7) The Orbiter HGDS (backup system) shall be active. - (8) The LH₂/LO₂ purges shall be initiated. - (9)Pad safing/securing teams shall have completed initial pad safing. - (10)H₂ boiloff shall be stable and initial 30-minute purge shall be complete. - (11)H₂ fire and leak detectors shall be active and monitored. - (12)There shall be no H₂/O₂ leaks from the Orbiter, ET or GSE systems. Leaks in the storage facilities shall be evaluated to ensure no impact or safety concern to the RSS rotation operation. - SRB/SSME engine service platforms shall not be installed until boiloff is complete. g. - PRSD servicing shall be prohibited until completion of ET H₂ boiloff to less than 1 h. percent H₂. #### 4.0 **POSTLAUNCH OPERATIONS** Following launch, the Postlaunch Convoy shall: - Proceed to the BDA upon direction from the Test Director (TD)/SCC. a. - b. Hold at the BDA until a safe condition is verified at the pad gate. - Enter the Pad upon concurrence from the TD and after the SCC has verified that: C. - The PIC resistance tests are complete and the system is powered down. (1) - (2) The Safety Operational Television (OTV) scan is complete with no anomalies. - (3) The fire/leak detector status is complete with no anomalies. - (4) The LO₂ and LH₂ system purges are initiated. - (5) MLP GN₂-to-air changeover is complete. #### 5.0 **ORBITER NOMINAL LANDING** - The entire landing facility area shall be under security-controlled access prior to Orbiter a. approach. The controlled access area is defined as a 5500-foot radius established from the runway centerline down the entire length of the runway. This control area shall be established 3 hours prior to landing until the Orbiter lands and it is verified there are no major hazardous materials spills. - b. All essential personnel required to be within the 5500-foot radius shall: - (1) Have satisfactorily completed emergency escape training for the facility. - (2) Have
egress capability and communications available to someone who can direct evacuation. - **KSC Guest Viewing Restrictions** C. - Viewing shall be at the Shuttle Landing Facility (SLF) Midfield Press viewing site. (1) Visitors shall not be permitted at the viewing site during abort landings. The total combined number of guest and press buses shall be limited to 24 at the viewing site. Buses used to transport visitors shall be parked in a manner to provide for evacuation as quickly as possible and visitors shall be separated from convoy and emergency crews/ equipment by fencing. - (2) The KSC Center Director or his/her designee shall approve runway access for KSC Senior Management during Orbiter postlanding processing. The Launch Director (LD) or his/her designee shall accompany Senior Management and remain in communication with the NCC. The NCC shall give the LD an OK to proceed to the runway after the following operational requirements are met: - (a) Landing + 45 minutes - (b) Crew Transport Vehicle moved away from Orbiter - (c) Successful completion of upper level assessment. - The condition of the Orbiter and wind direction shall determine the safety control area, position of the vehicles after Orbiter landing, and the Safety Assessment Team attire. The following shall be the minimum acceptable control areas until the Safety Assessment Team finishes the safety assessment of the Orbiter and the surrounding area: - A 1250-foot radius of the Orbiter after wheel stop shall be established and maintained as (1) the safety control area. All vehicles and personnel shall remain at the 1250-foot radius until ingress of required safing vehicles and personnel is allowed. - (2) A 200-foot upwind and a 700-foot downwind, control area shall be established for hypergolic release/leak potentials until safety assessments are accomplished. - e. The Safety Assessment Team shall perform the following in sequence, upon direction from the operating organization: - Approach the Orbiter in the Self Contained Atmospheric Protective Ensemble (SCAPE) vehicle, wearing Self-Contained Breathing Apparatus (SCBA): - Upwind Landing: Proceed to a point 200 feet from the nose of the Orbiter, deploy the Assessment Team, and return to the rear of the mini-convoy. The Safety Assessment Team shall take continuous vapor readings and proceed to approximately 50 feet from the Orbiter and hold until advised by the operating organization. - Downwind Landing (or winds less than 3 knots): Proceed to a point 700 feet from the Orbiter as directed by the operating organization. Deploy the Safety Assessment Team and return to the rear of the mini-convoy. The Safety Assessment Team shall take continuous vapor readings and proceed to 50 feet from the Orbiter and hold until advised by the operating organization. - (2) Start the assessment, proceed towards the Orbiter taking continuous readings. - (a) If readings are acceptable, proceed with the forward and aft assessments as outlined in the applicable TOP. - If the initial readings exceed Orbiter postlanding GH₂ requirements (per Table K-1) then fallback and proceed to personnel evacuations as outlined in Section 5.0j. - While performing the forward and aft assessments, checks shall be made for gas or fluid (c) leaks, fire, hot wheels/brakes, and tire damage, staying outside the danger areas outlined in Section 5.0i. - (d) Any anomalies found during any part of the safety assessment shall be immediately reported to the operating organization. - After the forward assessment is completed and acceptable, the vehicles required for safing and crew egress may move into position to perform their assigned tasks at the direction of NCC, Safety, and the operating organization. Any critical entry requirement, beyond the required vehicles, shall require approval by NCC, NASA Safety, and the operating organization. - (4) After the aft ground-level safety assessment downgrade is given, then the remaining safing vehicles may move within 50 feet aft of the Orbiter. Umbilical access vehicles shall not be positioned at the Orbiter until after Auxiliary Power Unite (APU) shutdown. - Upon connection of T-0 panels and HGDS Quick Disconnects (QDs), Safety shall monitor for GH₂ content in the aft, payload, and mid-fuselage ports. - After the forward and aft ground level assessment is complete and acceptable, essential payload and/or flight crew systems personnel and vehicles may move into position as approved by NCC, Safety, and the operating organization. - (7) Upon acceptable reading of payload bay HGDS hydrogen sampling and following the Payload Bay 10-minute purge, support vehicles may move into the control area with approval from NCC and Safety. - If mission-returned cargo contains hydrazine, monitor vent doors numbers 8 and 9 after (8) purge has been initiated. - (9) Continue to monitor toxic vapor sensing instruments and general area of Orbiter during postlanding inspection and tow operation. - (10)Personal Protective Equipment (PPE) downgrade shall take place only after toxic and explosive atmospheric checks are within acceptable limits - A 25-foot radial control area shall be maintained around the T-0 S70-1214/1215 prior to (11)initiating controlled PRSD venting. | H ₂
CONCEN-
TRATIONS | VENT DOOR #3
READING (NOTE
6) | INITIAL HAZ
GAS READING
(NOTE 5) | FIRST 10
MINUTE
MONITOR | AFTER 10
MINUTE
MONITOR | |---------------------------------------|---|---|--|--| | Over 1%
(NOTE 2) | Reposition vent doors Power down Orbiter Evacuate Flight Crew Evacuate all personnel Assess quantities and leakage for reassessment Try to initiate purge Monitor Vent Door #3 until repositioned | Power down Orbiter Evacuate Flight Crew Evacuate all personnel Try to initiate purge Take another Haz Gas reading | Power down Orbiter Evacuate Flight Crew Evacuate all personnel Maintain purge Take another Haz Gas reading | Power down Orbiter Evacuate Flight Crew Evacuate all personnel Maintain purge Take another Haz Gas reading | | Trace 1%
(NOTE 2) | | | Essential ops (NOTE 4) Maintain Orbiter power Maintain purge Continuous monitor (NOTE 1) | Essential ops (NOTE 4) Maintain Orbiter power Maintain purge Continuous monitor (NOTE 1) | | 0% | Controlled ops (NOTE 3) | ### **TABLE K-1** ORBITER POSTLANDING GH2 REQUIREMENTS ### **Table K-1 Notes:** - (1) Spikes are expected; you should expect a downward trend within five minutes of initiating purge (should be below one percent H₂ within 15 minutes of initiating purge). - Meter Readings: (All readings above baseline zero percent Lower Explosive Level (LEL) (2) shall be reported.) - Trace: A meter reading of at least 10 percent LEL for 30 seconds. (a) - Over 1 percent: A meter reading of at least 25 percent LEL for 30 seconds. - Controlled Operations: Definition as currently stated in landing OMI. (3) - Essential Operations: To maintain purge, cooling, Orbiter power, and flight crew egress (4) - Initiate purge after initial Haz Gas reading or within 30 minutes of upper aft downgrade, (5)whichever occurs first. Without Haz Gas readings, initiate purge and monitor vent door No. 9. If reading is less than trace after five minutes, open upper aft left and right for controlled operations per landing OMI. Monitor vent door No. 9 until Haz Gas reading is available. - (6) If vent door No. 3 reading is 1 percent or less, it is acceptable to use the white room vehicle to evacuate the flight crew, provided ground level hydrogen at hatch area is also 1 percent or less. - When Orbiter power-down is required after the safety assessment, the S70-1214/1215 PRSD vent panels shall be installed. - Personnel shall remain clear of Main Landing Gear (MLG) for a minimum of 45 minutes after landing. The restricted area shall be bounded by 20-foot radius circles around MLG struts and 60-foot radius, 45-degree sectors whose apexes shall be at center of wheels. The centerline shall be projected from wheel axles. Strobe lights shall be placed 60 feet from the Orbiter MLG (both sides). Strobes shall be activated after ground level downgrade is completed and acceptable and shall be turned off 45 minutes after wheel stop. - Personnel shall remain clear of restricted area around the Orbiter side hatch until the h. Convoy Commander receives confirmation of hatch safe. Restricted area is a 15-foot by 100foot corridor projected out from the side hatch. - Mission-returned cargo containing hydrazine and/or nitrogen tetroxide shall be checked at Orbiter left and right hand vent doors No. 3 for toxic and explosive vapor readings. If acceptable readings are exceeded, SCAPE is required to continue safing operations. Acceptable readings are 0 to 1 ppm for fuel and 0 to 20 ppm for oxidizer. If hydrazine readings exceed 180 ppm, the following shall be implemented: - (1) Crew performs an expedited power-down. - Mode V aided egress. (2) - Evacuate all personnel to 1250 feet of the Orbiter. (3) - (4) Upon the direction of NCC and Safety, attempt to establish purge. - If the drag chute fails to deploy during rollout, personnel and vehicles shall stay clear of drag chute deployment area (10 degrees left to 47 degrees right of Orbiter centerline and 100 feet aft)
until pyrotechnic circuits are verified safed. Confirm circuit breaker in crew compartment is verified open. - k. Personnel Clears for Postlanding Operations - In coordination with the operating organization and the Convoy Commander, all personnel, including flight crew, shall be cleared to a minimum of 1250 feet from the Orbiter area when explosive/flammability readings are above the maximum allowable concentrations. - All personnel shall be cleared 200 feet upwind and 700 feet downwind of the Orbiter when hypergolic Threshold Limit Value (TLV) readings are above the allowable limits (unless personnel attired in SCAPE). - After clearing all personnel, the operating organization shall wait a minimum of 10 minutes and activate the fan machine (if not already activated) before directing the assessment team to approach the Orbiter (upwind) for additional assessments. If this assessment also exceeds the TLV limits, but less than explosive level limits, then further operations shall be conducted in SCAPE.